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Saccharomyces cerevisiae

Photos: www.kaeberleinlab.org, www.alltech.com

Brewer’s, Baker’s or Ale Yeast.

Studied by biologists as a model eukaryotic organism.

Yeast are used in many bio-engineering processes.
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Metabolic Oxygen Oscillations

Disolved O2 vs. time:

20 hrs. Range 5% - 65%.

Microarray time-series:

Z.Chen et. al. Science 316 (2007).
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Oxygen Oscillations

Oscillations occur under the following conditions:

• Well-mixed bioreactor.

• Slow input and output.

• Highly oxygenated media

• High cell density.

• Boczko observed: The period of oscillation is always nearly an

integer fraction of the culture’s doubling time.
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Cell Cycle of Budding Yeast

G1: growth phase, begins
with cell division

S: replication phase,
begins with budding

G2: second growth phase

M: narrowing or “necking”,
ends in cell division

Cell cycle synchrony is unstable in budding yeast. Initially syn-

chronized cultures quickly de-synch, due to asymmetric division.

A casual link between O2 oscillations and the cell cycle was dis-

missed in one early paper without data.
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Clustering

By Cluster we mean a group of cells traversing the cell cycle in

near synchrony. (Not spatial clustering.)

Hypotheses:

A large cluster of cells in one part of the cell cycle might influence

the progress of cells in another part (thru metabolic products?).

This feedback might reinforce the formation/stability of clusters.

Clustering and Oscillations are intrinsically linked.
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Model of RS Feedback

xi(t) ∈ [0,1] - state of i-th cell, xi = 1 7→ xi = 0 (division).

Signaling region S = [0, s). Responsive region R = [r,1).

σ = #{cells in S}/n.

RS feedback model:

dxi
dt

=







1, if xi /∈ R

1+ ρ(σ), if xi ∈ R.
(1)

ρ(σ) is a “response” function. Assume +/− monotone.
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Clusters Exist - Simulations

S - Signaling, R - Responsive

Simulation, 500 cells,

Negative feedback & noise:

 

 

R

S

s = .25

.50

r = .75

• Simulations with any feedback

almost always form clusters.

• Analysis of simple RS feed-

back confirms clustering is ro-

bust.

• We began looking for cluster-

ing in yeast experiments.
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Clusters Exist - Mathematics

n - number of cells, n ∼ O(1010). Phase space is T
n.

In the model (1), a synchronized cluster of cells will persist, so

we may reduce the dimension to k, the number of clusters.

A clustered solution {xi(t)}
k
i=1 is cyclic if ∃ a time d > 0 s.t.:

xi(d) = xi+1(0) ∀ i = 1, . . . , k − 1,

and xk(d) = x1(0) mod 1.

Theorem. If k is a divisor of n, then a cyclic k cluster solution

exists consisting of n/k cells in each cluster.

Special Cases: k = 1 - synchronized, k = n - uniform.
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Cluster Systems

Strategy: Study solutions consisting of k clusters. Use the map

F below. F k is the Poincaré return map.

7→
F

x1 x2 x3 x
′

1
x
′

2 x
′

3

0 1 0 1

F consists of flowing until xk(t) = 1, then reordering indices.

F : S → S, S = {0 ≤ x2 ≤ . . . ≤ xk ≤ 1}.

Proof: F permutes the boundary of S + Brouwer ⇒

F has interior fixed point ⇐⇒ k-cyclic solution.

We can also use F to study solutions for small k in detail.
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Clusters Exist - Experiments

Oxygen dilution (green), bud index (blue) and cell density (red)

over one cell cycle period. There are 2 clusters in anti-phase.
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Isolated Clusters and the Geometric Constant M

If the distance between two clusters is more that |R| + |S| then

those two clusters will not interact.

M = ⌊(|R|+ |S|)−1⌋.

- max # of clusters that can exist without interactions.

Solutions with k ≤ M noninteracting clusters will be periodic.

Theorem - For positive feedback the set of solutions with non-

interacting clusters is locally asymptotically stable. For negative

feedback it is unstable. Synchronized solution is stable for posi-

tive feedback, unstable for negative. True for general models.
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Negative vs. Positive Feedback
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negative feedback

positive feedback

M

The number of clusters that form in simulations compared with

M = ⌊(|R|+ |S|)−1⌋.
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2 Cluster Systems - Detailed Analysis

F for positive feedback, k = 2. (a) r + 3
2s < 1. (b) r + 3

2s ≥ 1.

From F we can infer all dynamics of 2 cluster solutions:

• Cyclic solution is unstable for positive feedback.

• Cyclic solution is stable for negative feedback and large set of
parameter values.
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Stability of k-cyclic solution in r-s space - Neg. Feedback
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k = 2, . . . ,9. In subtriangles the “order of events” is invariant.

Blue - Stable, White - Neutral, Red - Unstable.
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Stability of k-cyclic solutions in r-s parameter space
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k = 10, . . . ,17
Primes are Regular, Composites are Irregular!!.
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Clustering is Universal for Negative Feedback

Overlay of Stable Regions:
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• There are many regions of

Bistability.

• Conjecture: All area is cov-

ered by stable regions.
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Another Nice picture

Number of clusters in simulations vs. overlay of stable regions:
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Instability of k-cyclic solutions with Positive Feedback

k = 2, . . . ,9. In subtriangles the “order of events” is invariant.

Blue - Stable, White - Neutral, Red - Unstable.
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Model with a gap (delay)
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n = 720, k = 4 clusters form.

A small delay does not effect the number of clusters.

A delay enhances the stability of stable clusters.
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Model with an explicit signaling agent z
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x

dxi
dt

=







1, if xi /∈ R

1 + ρ(z), if xi ∈ R.

dz

dt
= µσ − γz

σ = #{cells in S}/n.

2 cluster cyclic solution always exists

- unstable at lower cell density

- it becomes stable via pitchfork

- at high density basin is large.
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The model with noise

α

σ

L
2

Noise due to asymmetric division: σ ≈ 0.036.

(estimated from oscillation experiments).

The negative feedback parameter must be at least α = .6.

The “slowdown” is at least 1/3 of the normal rate.
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Conclusions for General RS feedback

• Clustering is a robust phenomenon for negative feedback:

- Not dependent on functional form of feedback.

- It occurs for large open sets of parameter values.

• Positive feedback tends to produce Synchronization. 2 ≤ k ≤ M

clusters are only neutrally stable.

• Number of clusters depends heavily on size of S and R.

• Cell cycle clustering is experimentally verified.

• The biological mechanism driving clustering seems to be large

negative feedback.
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Some Open Problems

• Show that feedback makes the uniform solution unstable.

• Analyze PDE versions of the feedback model, such as:

∂u

∂t
+

∂

∂x
(a(x, [u])u) = 0, a(x, [u]) = 1+ f

(

∫ 1

0
k(x, y)u(y) dy

)

,

with k(x, y) supported on R× S, e.g. h(x, y) = χR×S.

O. Diekmann and collaborators proved stability of the uniform

solution for dispersive cell-cycle PDE models without feedback.

• Connect these results with detailed modeling and biology. We

are pursuing this in the context of Fruit Fly embryos.
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