Todd Young

Department of Mathematics

Math Club, Athens, November 2017

Rank

Definition: The rank, r, of an $m \times n$ matrix A is the number of independent columns (or rows).
A has full rank if $r=\min \{m, n\}$.
Rank can be determined by Gaussian Elimination:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) \mapsto\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)
$$

1 non-zero row implies A has rank 1 .

Rank

Definition: The rank, r, of an $m \times n$ matrix A is the number of independent columns (or rows).
A has full rank if $r=\min \{m, n\}$.
Rank can be determined by Gaussian Elimination:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) \mapsto\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)
$$

1 non-zero row implies A has rank 1 .
But, Rank is numerically unstable.

$$
B=\left(\begin{array}{cc}
1 & 2 \\
2 & 4.000001
\end{array}\right)
$$

B has rank 2. A random matrix has full rank.

Partial Differential Equations

Heat Equation:

$$
\frac{\partial}{\partial t} u=c \frac{\partial^{2}}{\partial x^{2}} u
$$

$u(t, x)$ - temperature as a function of time and space.

Partial Differential Equations

Heat Equation:

$$
\frac{\partial}{\partial t} u=c \frac{\partial^{2}}{\partial x^{2}} u
$$

$u(t, x)$ - temperature as a function of time and space.

How is this related to RANK?

Products of Vectors

$$
\text { Dot Product: } \mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}(=|\mathbf{u}||\mathbf{v}| \cos \theta) .
$$

Products of Vectors

Dot Product: $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}(=|\mathbf{u}||\mathbf{v}| \cos \theta)$. In matrix notation:

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

Products of Vectors

Dot Product: $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}(=|\mathbf{u}||\mathbf{v}| \cos \theta)$. In matrix notation:

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

The Outer Product is defined to be:

$$
\mathbf{u} \otimes \mathbf{v}=\mathbf{u} \mathbf{v}^{T}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right)
$$

Outer products are rank 1 matrices

Example:

$$
\mathbf{u v}^{T}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
4 & 5 & 6 \\
8 & 10 & 12 \\
12 & 15 & 18
\end{array}\right)
$$

Each column is a multiple of \mathbf{u} and each row a multiple of \mathbf{v}. $\mathbf{u v}^{\top}$ has rank 1 .

Theorem: A matrix A has rank 1 iff $A=\mathbf{u} \mathbf{v}^{\top}$ for some \mathbf{u}, \mathbf{v}.
This representation is not unique since $\mathbf{u} \mathbf{v}^{T}=(c \mathbf{u})\left(\frac{1}{c} \mathbf{v}^{T}\right)$.
$A=\operatorname{auv}^{T}$ with $|\mathbf{u}|=|\mathbf{v}|=1$ is unique, where $a=\|A\|_{2}$.

Heat Equation is Separable

Temperature $u(t, x)$ satisfies $\frac{\partial}{\partial t} u=c \frac{\partial^{2}}{\partial x^{2}} u$.
Assume an ansatz: $u(t, x)=T(t) X(x)$ - "separable".

$$
T^{\prime}(t) X(x)=T(t) X^{\prime \prime}(x) \Longrightarrow \frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

Heat Equation is Separable

Temperature $u(t, x)$ satisfies $\frac{\partial}{\partial t} u=c \frac{\partial^{2}}{\partial x^{2}} u$.
Assume an ansatz: $u(t, x)=T(t) X(x)$ - "separable".

$$
T^{\prime}(t) X(x)=T(t) X^{\prime \prime}(x) \Longrightarrow \frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=C
$$

Heat Equation is Separable

Temperature $u(t, x)$ satisfies $\frac{\partial}{\partial t} u=c \frac{\partial^{2}}{\partial x^{2}} u$.
Assume an ansatz: $u(t, x)=T(t) X(x)$ - "separable".

$$
T^{\prime}(t) X(x)=T(t) X^{\prime \prime}(x) \Longrightarrow \frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=C
$$

$$
\begin{aligned}
& T^{\prime}=C T \Longrightarrow T(t)=T(0) e^{C t} \\
& X^{\prime \prime}=C X \Longrightarrow X(X)=A \sin (\sqrt{C} x)+B \cos (\sqrt{C} x) \\
& u(t, x)=e^{C t}(A \sin (\sqrt{C} x)+B \cos (\sqrt{C} x))
\end{aligned}
$$

$u=T(t) X(x)$ is an "outer product".

Discretization of $u(t, x)$

In applications, solutions of differential equations are often approximated numerically rather than solved symbolically.

Numerical solutions are discrete. $t \mapsto\left\{t_{j}\right\}, x \mapsto\left\{x_{i}\right\}$.

$$
u\left(t_{j}, x_{i}\right) \approx U_{i j}
$$

Think of $\left(U_{i j}\right)$ as a matrix U. If u is separable,

$$
u(t, x)=T(t) X(x) \Longrightarrow U=\left(T\left(t_{j}\right)\right)\left(X\left(x_{i}\right)\right)^{T}=\bar{T} \bar{X}^{T}
$$

$\{u(t, x)$ is separable $\}$ corresponds to $\{U$ is an outer product $\}$.

Complexity and Storage

Suppose m grid points in x direction \& n grid points in t direction.
U is a $m \times n$ matrix $\Longrightarrow m n$ entries.
If U is an outer product of \bar{T} and \bar{X}, then you only really need to store $m+n$ numbers, i.e. the entires of \bar{T} and \bar{X}

Example: $m=100$ and $n=100$,
$m n=10,000$ but $m+n=200$.

The Singular Value Decomposition

SVD theorem: Given any $m \times n$ matrix A,

$$
A=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}=U \Sigma V^{T}
$$

- $\left\{\mathbf{u}_{i}\right\},\left\{\mathbf{v}_{i}\right\}$ are orthonormal sets of vectors,
- $\left\{\sigma_{i}\right\}$ are positive real numbers called singular values,
- $r \leq \min (m, n)$ is the rank of A.

May order: $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$.

The SVD Approximation Theorem

Principle: The larger singular values are more important.
For $k<r$ let
$A_{k} \equiv \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T}+\ldots+\sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}$
Theorem (Eckart-Young-Mirsky): A_{k} is the best rank- k approximation of A with respect to either the Frobenius norm or the 2-norm. Further,

$$
\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}, \quad\left\|A-A_{k}\right\|_{F}=\sigma_{k+1}+\sigma_{k+2}+\ldots+\sigma_{r} .
$$

$$
\left\|A-A_{k}\right\|_{2} \equiv \max _{|\mathbf{x}|=1}|A \mathbf{x}|, \quad\left\|A-A_{k}\right\|_{F} \equiv \sqrt{\sum_{i, j=1,1}^{m, n} a_{i j}^{2}}
$$

Application to Image Compression

An image is recorded in an array of RGB values from 0 to 255. Example: 500 by 500 pixel image is $500 \times 500 \times 3=750,000$.

Suppose R is the 500×500 matrix of red values and let $R=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}=U \Sigma V^{T}$ be the SVD of R.

Let $R_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ the best rank- k approximation of R.
Storing R_{k} requires $k(m+n+1)$ numbers. If $k<n / 2$ then this is fewer numbers to store.
In the above example, with $k=100$, then $3 k(2 n+1)=300,300$.

- Maybe R_{k} is good enough?

Back to Partial Differential Equations

$u(t, x)=T(t) X(x)$ being separable depended on the linearity of the PDE.
What if:

$$
\frac{\partial}{\partial t} u=c \frac{\partial^{2}}{\partial x^{2}} u+g(u)
$$

where $g(u)$ is a small nonlinearity.
Maybe $u(t, x) \approx T_{1}(t) X_{1}(x)+T_{2}(t) X_{2}(x)$?
Or at worst:

$$
u(t, x) \approx T_{1}(t) X_{1}(x)+T_{2}(t) X_{2}(x)+\ldots+T_{k}(t) X_{k}(x)
$$

where k is small. Then storing an approximation $U_{i j}$ would require $k(m+n+1)$ numbers rather than $m n$.

Working efficiently with low rank representations is a subject of current research by Mohlenkamp and Young.

The Curse of dimensionality

Example: Electrons in an atom
Hydrogen - 1 electron $\times 3 \mathrm{dim}=3$ variables, linear equation - separable. Helium - 2 electrons $\times 3 \mathrm{dim}=6$ variables, nonlinear - not separable. Carbon - 6 electrons $\times 3 \mathrm{dim}=18$ variables, nonlinear - not separable.

Suppose we wish to represent the carbon "wave function."
With 100 grid points in each variable then

$$
100^{18}=10^{24} \text { Terabytes } \Longrightarrow \text { Intractable. }
$$

With a rank 100 approximation instead:

$$
100(18 \times 100)=180,000 \text { Numbers } \Longrightarrow \text { No Problem. }
$$

Conclusions

Thank you for your attention!

Study more Linear Algebra!

