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Rank

Definition: The rank, r , of an m × n matrix A is the number of
independent columns (or rows).

A has full rank if r = min{m, n}.

Rank can be determined by Gaussian Elimination:

A =

(
1 2
2 4

)
7→
(

1 2
0 0

)
1 non-zero row implies A has rank 1.

But, Rank is numerically unstable.

B =

(
1 2
2 4.000001

)
B has rank 2. A random matrix has full rank.
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Partial Differential Equations

Heat Equation:
∂

∂t
u = c

∂2

∂x2
u

u(t, x) - temperature as a function of time and space.

How is this related to RANK?
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Products of Vectors

Dot Product: u · v = u1v1 + u2v2 + . . .+ unvn ( = |u||v| cos θ ).

In matrix notation:

u · v = uTv =
(
u1 u2 · · · un

)


v1
v2
...
vn


The Outer Product is defined to be:

u⊗ v = uvT =


u1
u2
...
un

( v1 v2 · · · vn
)
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Outer products are rank 1 matrices

Example:

uvT =

 1
2
3

( 4 5 6
)

=

 4 5 6
8 10 12

12 15 18


Each column is a multiple of u and each row a multiple of v.

uvT has rank 1.

Theorem: A matrix A has rank 1 iff A = uvT for some u, v.

This representation is not unique since uvT = (cu)( 1c v
T ).

A = auvT with |u| = |v| = 1 is unique, where a = ‖A‖2.
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Heat Equation is Separable

Temperature u(t, x) satisfies
∂

∂t
u = c

∂2

∂x2
u.

Assume an ansatz: u(t, x) = T (t)X (x) - “separable”.

T ′(t)X (x) = T (t)X”(x) =⇒ T ′(t)

T (t)
=

X”(x)

X (x)

= C .

T ′ = CT =⇒ T (t) = T (0)eCt

X” = CX =⇒ X (X ) = A sin(
√
Cx) + B cos(

√
Cx)

u(t, x) = eCt
(
A sin(

√
Cx) + B cos(

√
Cx)

)
u = T (t)X (x) is an “outer product”.
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Discretization of u(t, x)

In applications, solutions of differential equations are often approximated
numerically rather than solved symbolically.

Numerical solutions are discrete. t 7→ {tj}, x 7→ {xi}.

u(tj , xi ) ≈ Uij .

Think of (Uij) as a matrix U. If u is separable,

u(t, x) = T (t)X (x) =⇒ U = (T (tj))(X (xi ))T = T X
T
.

{u(t, x) is separable} corresponds to {U is an outer product}.

Todd Young (Ohio) The Surprising Usefulness of Rank November 2017 7 / 14



Complexity and Storage

Suppose m grid points in x direction & n grid points in t direction.

U is a m × n matrix =⇒ mn entries.

If U is an outer product of T and X , then you only really need to store
m + n numbers, i.e. the entires of T and X

Example: m = 100 and n = 100,

mn = 10, 000 but m + n = 200.
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The Singular Value Decomposition

SVD theorem: Given any m × n matrix A,

A =
r∑

i=1

σiuiv
T
i = UΣV T

{ui}, {vi} are orthonormal sets of vectors,

{σi} are positive real numbers called singular values,

r ≤ min(m, n) is the rank of A.

May order: σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
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The SVD Approximation Theorem

Principle: The larger singular values are more important.

For k < r let

Ak ≡
∑k

i=1 σiuiv
T
i = σ1u1vT1 + σ2u2vT2 + . . .+ σkukv

T
k

Theorem (Eckart-Young-Mirsky): Ak is the best rank-k approximation of
A with respect to either the Frobenius norm or the 2-norm. Further,

‖A− Ak‖2 = σk+1, ‖A− Ak‖F = σk+1 + σk+2 + . . .+ σr .

‖A− Ak‖2 ≡ max
|x|=1
|Ax|, ‖A− Ak‖F ≡

√√√√ m,n∑
i ,j=1,1

a2ij
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Application to Image Compression

An image is recorded in an array of RGB values from 0 to 255.
Example: 500 by 500 pixel image is 500× 500× 3 = 750, 000.

Suppose R is the 500× 500 matrix of red values and let
R =

∑r
i=1 σiuiv

T
i = UΣV T be the SVD of R.

Let Rk =
∑k

i=1 σiuiv
T
i the best rank-k approximation of R.

Storing Rk requires k(m + n + 1) numbers. If k < n/2 then this is fewer
numbers to store.
In the above example, with k = 100, then 3k(2n + 1) = 300, 300.

• Maybe Rk is good enough?
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Back to Partial Differential Equations

u(t, x) = T (t)X (x) being separable depended on the linearity of the PDE.

What if:
∂

∂t
u = c

∂2

∂x2
u + g(u)

where g(u) is a small nonlinearity.

Maybe u(t, x) ≈ T1(t)X1(x) + T2(t)X2(x)?
Or at worst:

u(t, x) ≈ T1(t)X1(x) + T2(t)X2(x) + . . .+ Tk(t)Xk(x),

where k is small. Then storing an approximation Uij would require
k(m + n + 1) numbers rather than mn.

Working efficiently with low rank representations is a subject of current
research by Mohlenkamp and Young.
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The Curse of dimensionality

Example: Electrons in an atom

Hydrogen - 1 electron × 3 dim = 3 variables, linear equation - separable.
Helium - 2 electrons × 3 dim = 6 variables, nonlinear - not separable.
Carbon - 6 electrons × 3 dim = 18 variables, nonlinear - not separable.

Suppose we wish to represent the carbon “wave function.”
With 100 grid points in each variable then

10018 = 1024 Terabytes =⇒ Intractable.

With a rank 100 approximation instead:

100(18× 100) = 180, 000 Numbers =⇒ No Problem.
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Conclusions

Thank you for your attention!

Study more Linear Algebra!
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