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Saccharomyces cerevisiae Photo: Wikipedia

Sources: www.kaeberleinlab.org, www.alltech.com

Brewer’s, Baker’s or Ale Yeast.

Studied by biologists as a model eukaryotic organism.

Yeast are used in many bio-engineering processes.
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Oxygen oscillations

Fraction of Oxygen dilution in a culture of yeast.

Time scale 20 hours. Range 5% - 65%.
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Possible Explanations for Oscillations

• Metabolic.

• Media feedback.

• Cell-cell signaling.

• Genetic.

Z.Chen et. al. Science 316 (2007).
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Oxygen Oscillations

Oscillations occur under the following conditions:

• highly oxygenated media

• well-mixed, planktonic cultures.

• high cell density.

• The period of oscillation is nearly an integer fraction of the

doubling time.
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Cell Cycle of Budding Yeast

G1: gap phase, begins

with cell division

S: replication phase,

begins with budding

G2: second gap phase

M: narrowing or “necking”,

ends in cell division Source: www.shef.ac.uk

A casual link between O2 oscillations and the cell cycle was

dismissed in one early paper without data.
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Clustering

By Clustering we mean groups of cells traversing the cell cycle

in near synchrony. (Not spatial clustering.)

Hypotheses:

A large cluster of cells in one part of the cell cycle might

influence the growth rate of cells in another part, e.g. a cluster

of budded cells might inhibit the onset of budding in other cells.

A large cluster of cells at the G1-S boundary could consume

enough oxygen to cause the observed dips in diluted O2.
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Hypothesized Feedback Mechanism and Clusters

S - Signaling region, R - Responsive region

Cells in S exert +/− influence on the growth of cells in R

Simulation with negative feedback and diffusion:
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Modeling of cell cycle dynamics

Onset of phases is marked by volume milestones. The volume

vi of a cell is a convenient variable representing location within

the cell cycle.

For a given cell, indexed by i, let vi(t) denote its volume. It

is observed that the volume growth of a cell in a culture is

proportional to its volume, i.e.

dvi

dt
= civi.

Standard assumption: ci depends on external factors.

Our assumption: ci also depends on internal factors.
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Normalized, Logarithmic Variables

Let Vb,i denote the volume of a cell at the beginning of its cell

cycle and Vd,i its volume at division.

Consider:

xi =
ln(vi/Vb,i)

ln(Vd,i/Vb,i)
.

Then xi ∈ [0,1) satisfies

dxi

dt
= ci.

When xi(t) reaches 1 (division) it returns to 0 (birth), along

with it daughter.

(Normalized variables also facilitate PDE models.)
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Culture vs. Individual; Random D.E. model.

We distinguish influences on growth rate that are:

• common to all the cells in the culture: a(t, xi, x̄)

(but may depend on the position in cell cycle), and

• due to individual differences: bi(t)

dxi

dt
= a(t, xi, x̄) + bi(t). (RDE)

In most applications bi will be relatively small and “random”;

too complex to model.

The equation may be viewed as a Random D.E..
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Stochastic D.E. and Ordinary D.E. Models

A reasonable approximation in some circumstances is to re-

place bi by a stochastic term:

dxi = a(t, xi, x̄) dt +
√

σ dWi, (SDE)

where dWi is an independent white noise term.

It is also reasonable under certain circumstances to consider

(RDE) and (SDE) as perturbations of:

dxi

dt
= a(t, xi, x̄). (ODE)

This model allows for variation of the growth rate on status

of the cell within its cycle and the overall state of the system,

but ignores differences between individual cells.
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Assume a fixed number of cells

Mothers and daughters have the same trajectory under (ODE).

For a nearly-steady or nearly-periodic state: The expected

number of cells descended from a given cell at the same point

in a later cell cycle is ≈ 1.

Each variable xi(t) may be thought of as the state of the

expected descendant at time t.

• A fixed # allows easy numerical investigation.

• A fixed # allows for rigorous analysis.
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Advancing and blocking models of feedback

S – signalling region R – responsive region

dxi

dt
=







1 if xi 6∈ R

F (#{cells in S}) if xi ∈ R.
(1)

Limiting cases of +/− feedback with a threshold τ :

Advancing: F (N) =







1 if N < τ,

+∞ if N ≥ τ.

Blocking: F (N) =







1 if N < τ,

0 if N ≥ τ.
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Results on Clustering

In the idealized advancing and blocking models:

• Cells will synchronize forming clusters.

• Clusters will remain synchronized forever.

• Given enough cells, clusters will form

• The number of stable clusters has explicit bounds.

• The number of clusters depends on |S| and |R|.

G = |R|+ |S| minimum gap between non-interacting clusters.

M = bG−1c maximum number of isolated clusters.

Proofs by direct calculation.
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Random perturbation of the idealized models

If we:

Assume a (explicit) bound on |bi|
(small noise and individual differences)

Then we can prove, under certain conditions:

Existence of and bounds on clusters.

Proofs depend on careful, but simple estimates.
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Simulations of SDE models with linear feedback

We consider the SDE model with cells in S influencing cells in

R by a linear relation:

dxi =







dt +
√

σ dW if xi 6∈ R

dt + f(#{cells in S}) dt +
√

σ dW if xi ∈ R.
(2)

with f linear.

We integrate a fixed set of 5,000 cells.
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Simulations of the SDE model with linear acceleration. Here

R = [.1, .2], S = [.2, .3], σ = .02. M = 3. (a) Histogram of the

final distribution of cells within the cell cycles. (b) Time-series

of the final two time frames. One unit of time corresponds to

one unperturbed cell cycle.
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Simulations of the SDE model with linear inhibition. Here

R = [.1, .2], S = [.2, .3], σ = .02. M = 3. (a) Histogram of

the final distribution of cells. (b) Time-series of the final two

time frames.
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Simulations of the SDE model with linear acceleration. Here

R = [.14, .2], S = [.2, .26], σ = .01. M = 9 (a) Histogram of

the final distribution of cells. (b) Time-series of the final two

time frames.
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Simulations of the SDE model with linear inhibition. Here

R = [.15, .2], S = [.2, .26], σ = .01. M = 9. (a) Histogram of

the final distribution of cells. (b) Time-series of the final two

time frames.
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Budded Yeast

Sources: www.kaeberleinlab.org, www.alltech.com

The fraction of budded yeast in a sample may be determined.

The replicative ages of yeast cells in a sample may be deter-

mined (harder).

Ohio University – Since 1804 Department of Mathematics



Experimental evidence for Clustering

Oxygen dilution (green), bud index (blue) and cell density (red)

over one cell cycle period. There are 2 clusters.
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2 Cluster Systems - Detailed Analysis

Plots of the return mapping piecewise constant Positive Feed-

back for K = 2. (a) r + 3
2s < 1. (b) r + 3

2s ≥ 1.
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3 Cluster Systems - An Example

K = 3. Partition of 0 ≤ x1 ≤ x2 ≤ 1 and its image for (s, r) =

(1
9, 5

12).

Ohio University – Since 1804 Department of Mathematics



3 Cluster Systems - Detailed Analysis in Progress

Parameter domains for three clusters (K = 3).
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General Feedback

1. For positive feedback, isolated clusters are stable and most

solutions tend to one of 1,2,3, ..., or M isolated clusters.

2. For negative feedback, cluster-cluster interaction is neces-

sary to enforce coherence and most solutions tend to N non-

isolated clusters, where N is a fixed number with N = M + i

and i is a small positive integer. In particular N ≥ 2.

3. “Evenly-distributed”, steady-state solutions exist for any

form of feedback. They appear to be completely unstable.
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Flow on Tn

The state space is Tn.

On the covering space, cells coordinates satisfy:

x1(t) ≤ x2(t) ≤ . . . ≤ xn(t) ≤ x1(t) + 1

Rotation vectors are along the diagonal.

Two different rotation vectors are attained.

∃ example with no intermediate rotation vectors.
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Conclusions

• Models of cell cycle dynamics can be accessible to analytic

investigation.

• Clustering is a robust phenomenon:

- Either positive or negative feedback.

- Not dependent on functional form of feedback.

- It occurs for many parameter values.

• Clustering is experimentally verified in oscillating cultures.

• The biological mechanism driving Clustering is still unknown.

• Detailed modeling of cellular processes must include cell cycle

effects.
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Directions for Further Study

• Clustering seems to depend heavily on geometry, of S and

R. Develop a bifurcation picture based on this observation.

• Study clustering and steady-states in PDE models of cell

cycle.

• Study multiple generation models.

• Use analytical results to inform experiments to determine the

precise nature of feedback.

• Combine with cellular process studies to discover feedback

mechanisms.

• Autonomous oscillation also to occur in dense bacterial colonies.
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