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Abstract

Approximating a multivariate tensor as a short sum of rank 1 tensors
has many important potential uses, but common optimization
algorithms applied to this problem can exhibit extremely slow progress
in regions known informally as “swamps”.

We have identified one possible type of swamp as a narrow valley
in the optimization landscape.

We analyze the dynamics of one important class of algorithms, in
typical valleys and identify several interesting and potentially
useful properties.

We have located robust narrow valleys in the optimization
landscape of tensor problems.
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Outline

1 The tensor approximation problem and alternating least squares (ALS)

2 Alternating methods in typical valleys

3 Valleys in tensor approximations problems
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Approximation by Sums of Separable (Rank 1) Tensors

Consider approximation of a tensor T of the form

T (j1, j2, . . . , jd) ≈ G (j1, . . . , jd) =
r∑

l=1

G l(j1, . . . , jd) =
r∑

l=1

d⊗
i=1

G l
i

d is the number of “directions”. If d is large, storing T is prohibitive.

r is the rank of the approximation.

Each G l is a tensor product of d vectors.

The ability to construct such approximations enables many algorithms in
high dimensions.
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Alternating Least Squares

ALS is an implementation of Block Coordinate Descent (BCD) in the
context of tensor approximation.
Considering:

T ≈ G =
r∑

l=1

G l =
r∑

l=1

d⊗
i=1

G l
i ,

if one optimizes w.r.t. one direction i at a time, each step becomes a linear
Least Squares problem. Alternating between directions is called ALS.

Each step is very efficient and accurate.

But, ...
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Current Approximation Algorithms are Unsatisfactory

Sometimes everything is fine, but sometimes unpleasant things happen.

ALS behavior: Error and ∆ Error

Terminal swamp: 10000
iterations and the error is
still decreasing 10−11 at
each step.
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Transient swamp: 3000
iterations with error
decreasing like 10−8 at
each step, then rapid
convergence.
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Goals of this Project

1. Construct an efficient, robust, and otherwise great approximation
algorithm.

0. Understand why current algorithms have trouble.

-1. Understand why current algorithms have trouble on a few interesting
examples.

-2. Understand the approximation problem itself on a few interesting
examples.

Today we work toward goals -1 and -2.
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A “typical” valley

Narrow valleys are known to cause problems for optimization.
Suppose that v is a unit vector and ∆v = span(v).
Consider a quadratic error function for which ∆v is the valley floor:

E = C +
a

2
d2(x,∆v) + εv · x =

a

2

(
|x|2 − (v · x)2

)
+ εv · x.

∇E = ax− a(v · x)v + εv.

On ∆v, we have ∇E = εv. Further,

H = ∇2E = aI − avvT .

We see that Hv = 0 and if u ⊥ v then Hu = au.
a measures the steepness of the sides of the valley.
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Alternating method (BCD) with partitioned variables

Suppose that v and x are partitioned into d compatible sets of variables:

v = (v1, v2, . . . , vd)T and x = (x1, x2, . . . , xd)T ,

where dim xi = dim vi .
The gradient ∇E in partitioned variables reads:

∇E = a


x1

x2
...
xd

− a(x1 · v1 + x2 · v2 + . . .+ xd · vd)


v1

v2
...
vd

+ ε


v1

v2
...
vd


and so ∂E/∂x1 = 0 is:

ax1 − a(x1 · v1 + x2 · v2 + . . .+ xd · vd)v1 + εv1 = 0.
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ALS → recursion on coefficients

This has a solution x1 = c1
1v1, where

c1
1 =

1

1− |v1|2
(
x2 · v2 + . . .+ xd · vd −

ε

a

)
.

After one full round of ALS we will have:

x1 = (c1
1v1, c

1
2v2, . . . , c

1
dvd).

ALS is thereafter just a recurrence on (ck1 , c
k
2 , . . . , c

k
d ):

ck+1
i =

|v1|2ck+1
1 + . . .+ |vi−1|2ck+1

i−1 + |vi+1|2cki+1 + . . .+ |vd |2ckd −
ε
a

1− |vi |2
.
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Example d = 2

v = (v1, v2), x = (x1, x2), |v| = 1.
After the first full round of ALS, xk = (ck1 v1, c

k
2 v2), where:

ck1 = ck−1
2 − 1

β2

ε

a
,

ck2 = ck1 −
1

α2

ε

a
= ck−1

2 − 1

α2β2

ε

a
.

Each full pass moves a distance:

|∆v| =
1

α2β2

ε

a
=

1

cos2 θ sin2 θ

ε

a
= 4 csc2 2θ

ε

a
.

Here α = |v1| = cos θ and β = |v2| = sin θ.
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d = 2

Iterations Zig-Zig on lines ∼ ε
a from valley floor.

The direction you optimize first may matter a lot!
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Dependence on the ‘Angle’

Graph of csc2 2θ. Progress is slow except for shallow angles θ.
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Some Lessons from d = 2

Iterations zig-zag along lines ∼ ε/a from the valley floor.

Iterations move a distance ∼ ε/a.

Iterations move a distance proportional to csc2 2θ

A greedy first step is important.
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Example d = 3

v = (v1, v2, v3), x = (x1, x2, x3), α = |v1|, β = |v2|, γ = |v3|.

After the first full step, xk = (ck1 v1, c
k
2 v2, c

k
3 v3), where:

ck+1
1 = 1

1−α2

(
β2ck2 + γ2ck3 − ε

a

)
.

ck+1
2 = 1

1−β2

(
α2ck+1

1 + γ2ck3 − ε
a

)
.

ck+1
3 = 1

1−γ2

(
α2ck+1

1 + β2ck+1
2 − ε

a

)
.

This can be solved. Full iterations move by:
1

α2β2 + α2γ2 + β2γ2

ε

a

This is small unless TWO of α, β, γ are small.
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Example d = 3

Iterations converge to a nbhd of the valley floor.

The rate of attraction to the valley floor is: α2β2γ2

(1−α2)(1−β2)(1−γ2)
.
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Some Lessons from d = 3

Iterations are attracted to a nbhd of the valley floor at a rate
independent of ε and a.

Iterations zig-zag ∼ ε/a from the valley floor.

Full Iterations move a distance ∼ ε/a.

As dimensions grow almost all directions are ‘diagonal’ for ALS.
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Are there narrow valleys in tensor approximation problems?
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Generic Rank-2 Target Tensor

Applying a separable unitary change of basis, choice of orientation, and
normalization, any rank-2 tensor can be put in the form

T = Cz,φ̄

(
d⊗

i=1

u(0) + z
d⊗

i=1

u(φi )

)

where

u(φ) = cos(φ)e1 + sin(φ)e2 for orthonormal basis vectors {e1, e2},
0 ≤ φi ≤ π/2 controls the angle of factors in the second summand,

|z | ≤ 1 controls the relative size and direction of the two terms, and

the scalar makes T have norm 1.

These transformations commute with, and don’t affect, ALS.
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The Approximation

Consider approximations with the correct number of terms (rank 2):

G2 = a
d⊗

i=1

u(αi ) + b
d⊗

i=1

u(βi ) .

Regularized error:

Eλ(G ) = Eλ(G 1, . . . ,G r ) = ‖T − G‖2 + λ

r∑
l=1

‖G l‖2

= ‖T − G2‖2 + λ(a2 + b2) .

When λ = 0 this is ordinary least-squares error, while λ > 0 ensures the
problem is well-posed and controls loss-of-significance error.

Can make a and b ‘fast variables’ and eliminate them from the analysis.
Plot the error landscape in the symmetric case φi = φ, αi = α, βi = β.
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Eλ(G2) for
d = 6, z = 1,
αi = α, βi = β,

φ, λ =

[
π
2 , 0

π
2 ,

1
2

0.27π, 0 π
8 , 0

]
.
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An Essential Singularity
α1 = · · · = αd α2 = · · · = αd α2 = · · · = αd α2 = · · · = αd

(~α, ~β) = (α~1, β~1) and ~β → ~α and ~β = φ− ~α and ~β = φ− ~α
E0(G2) ∈ [0, 1] [0, 0.1] [0, 0.1] [0, 0.1]

i ∈ [0, 4) i ∈ [1, 30) i ∈ [20, 610) i ∈ [590, 610)

Illustration of a transient swamp flow path for (d , z , φ, λ) = (6, 1, π/8, 0)
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Conclusions

Diagonally oriented valleys occur.

Essential singularities exist on the boundary and tend to attract orbits.

Progress in a valley depends on the gradient and transverse Hessian.

Iterations are attracted to the valley at a rate independent of ε & a.

Greedy first steps are important.

Other implications for algorithm development are under consideration.

A visualization webpage is available at http:
//www.ohiouniversityfaculty.com/mohlenka/DSoTA/visual/

Thank you for your attention!
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