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Abstract

Approximating a multivariate tensor as a short sum of rank 1 tensors
has many important potential uses, but common optimization
algorithms applied to this problem can exhibit extremely slow progress
in regions known informally as “swamps”.

e We have identified one possible type of swamp as a narrow valley
in the optimization landscape.

e We analyze the dynamics of one important class of algorithms, in

typical valleys and identify several interesting and potentially
useful properties.

e We have located robust narrow valleys in the optimization
landscape of tensor problems.
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Outline

@ The tensor approximation problem and alternating least squares (ALS)
@ Alternating methods in typical valleys

© Valleys in tensor approximations problems
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Approximation by Sums of Separable (Rank 1) Tensors

Consider approximation of a tensor T of the form

r d
TU1,d2s -+ 5Ja) = G, -+ Ja) Z G'(t, - d) =Y Q) G/

I=1 i=1
d is the number of “directions”. If d is large, storing T is prohibitive.
r is the rank of the approximation.
Each G’ is a tensor product of d vectors.

The ability to construct such approximations enables many algorithms in
high dimensions.
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Alternating Least Squares

ALS is an implementation of Block Coordinate Descent (BCD) in the
context of tensor approximation.
Considering:

r d

TzG:iG’:Z®G/,
I=1

I=1 i=1
if one optimizes w.r.t. one direction i at a time, each step becomes a linear
Least Squares problem. Alternating between directions is called ALS.

Each step is very efficient and accurate.

But, ...
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Current Approximation Algorithms are Unsatisfactory

Sometimes everything is fine, but sometimes unpleasant things happen.

ALS behavior: Error and A Error

Terminal swamp: 10000
iterations and the error is
still decreasing 107! at
each step.
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Current Approximation Algorithms are Unsatisfactory

Sometimes everything is fine, but sometimes unpleasant things happen.

ALS behavior:

Terminal swamp: 10000
iterations and the error is
still decreasing 107! at
each step.

Transient swamp: 3000
iterations with error
decreasing like 1078 at
each step, then rapid
convergence.
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Goals of this Project

1. Construct an efficient, robust, and otherwise great approximation
algorithm.
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Goals of this Project

1. Construct an efficient, robust, and otherwise great approximation
algorithm.

0. Understand why current algorithms have trouble.

-1. Understand why current algorithms have trouble on a few interesting
examples.

-2. Understand the approximation problem itself on a few interesting
examples.

Today we work toward goals -1 and -2.
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A “typical” valley

Narrow valleys are known to cause problems for optimization.
Suppose that v is a unit vector and A, = span(v).
Consider a quadratic error function for which A, is the valley floor:

E:C+gd2(x,Av)+ev~x: (1x)? = (v-x)?) +ev - x.

N o

VE = ax — a(v - x)v + ev.
On A, we have VE = ev. Further,

H=V?%E = al —aw’.

We see that Hv = 0 and if u L v then Hu = au.
a measures the steepness of the sides of the valley.
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Alternating method (BCD) with partitioned variables

Suppose that v and x are partitioned into d compatible sets of variables:
v=(vi,vo,...,vg)" and x=(x1,X2,...,%q)",

where dim x; = dimv;.
The gradient VE in partitioned variables reads:

X1 Vi Vi

X2 V2 V2
VE =a ) —a(x1-vi+Xx2-Va+...+XgVyg) ) +€

Xd Vd Vd

and so OE/0x; =0 is:

ax; —a(xy-vi+ X2 V24 ...+ Xq-Vg)v1 + evy = 0.

Todd Young (Ohio) Dynamics of Tensor Approximation August 2017 10 / 24



ALS — recursion on coefficients

This has a solution x; = civy, where

1
1 _
TP

€
<X2-V2—{—...—|—Xd-vd—5) .
After one full round of ALS we will have:
1 1 1 1
x* = (¢iv1, 6V, ..., C4V4).

ALS is thereafter just a recurrence on (cf, ck, ..., cc’,‘):

kAL _ |v1|2c{‘+1 + ..+ |v,-_1|2c,.k_+11 + |v,-+1|2cl-"+1 + ..+ |vd|2c§ -5
o 1—|vif? ‘
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Example d = 2

v =(v1,v2), x = (x1,X2), |v| = 1.
After the first full round of ALS, x¥ = (cfv1, ckva), where:

1e
_ k-1
=09 s
1le _ 1 €
K= - S5-=c1
2TaA T 2,7 o232

Each full pass moves a distance:
1

1 €
- = € = 4esc? 29—
a2B2a  cos2fsin?fa

|Av| =

Here a = |vi| = cosf and 8 = |vp| = sin 6.

Todd Young (Ohio) Dynamics of Tensor Approximation August 2017

12 / 24



d=2

lterations Zig-Zig on lines ~ % from valley floor.
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d=2

. - : .
lterations Zig-Zig on lines ~ % from valley floor.
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The direction you optimize first may matter a lot!
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Dependence on the ‘Angle’
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Graph of csc?20. Progress is slow except for shallow angles 6.
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Some Lessons from d = 2

Iterations zig-zag along lines ~ ¢/a from the valley floor.
Iterations move a distance ~ €¢/a.

Iterations move a distance proportional to csc? 26

A greedy first step is important.
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Example d =3

v = (v1,v2,v3), X = (x1,X2,X3), a = |v1|, B = |v2|, 7 = |v3].
After the first full step, xk = (cfvl, cé‘vz, C:;’:V3), where:

et = = (B2ck + 2k - €).

C2k+1 _ 1_1ﬁ2 (achﬂ —|—’yzc§f _ §> .

k1 _ 1 (2 k+1 | g2 k+1 _ e
G —1—72(0‘C1 +6°¢ _5>-

This can be solved. Full iterations move by:

€
0232 + 242 + 2+2 3
This is small unless TWO of «, 3, ~ are small.
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Example d =3

Iterations converge to a nbhd of the valley floor.
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The rate of attraction to the valley floor is: =) (A=)
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Some Lessons from d = 3

Iterations are attracted to a nbhd of the valley floor at a rate
independent of € and a.

Iterations zig-zag ~ €/a from the valley floor.

Full Iterations move a distance ~ ¢/a.

@ As dimensions grow almost all directions are ‘diagonal’ for ALS.
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Are there narrow valleys in tensor approximation problems?
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Generic Rank-2 Target Tensor

Applying a separable unitary change of basis, choice of orientation, and
normalization, any rank-2 tensor can be put in the form

d d
T=C,; <® u(0) + z(X) u(¢,-)>
i=1

i=1
where
@ u(¢) = cos(¢)e; + sin(¢p)ex for orthonormal basis vectors {e1, es},
e 0 < ¢; < /2 controls the angle of factors in the second summand,
@ |z| <1 controls the relative size and direction of the two terms, and
@ the scalar makes T have norm 1.

These transformations commute with, and don't affect, ALS.
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The Approximation

Consider approximations with the correct number of terms (rank 2):

d d

G =a@Qu(e) + bXu(B)).

i=1 i=1

Regularized error:

.
Ex(G) = Ex(G',....G") =T =G>+ XD _|IG"|?
=1
= ||T — G2+ \a% + b?).

When A\ = 0 this is ordinary least-squares error, while A > 0 ensures the
problem is well-posed and controls loss-of-significance error.

Can make a and b ‘fast variables’ and eliminate them from the analysis.
Plot the error landscape in the symmetric case ¢; = ¢, a; = «, B = .
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An Essential Singularity

Q2 == Q4
and f=¢ —a
[0,0.1]
A
(4

i € [590,610)

lllustration of a transient swamp flow path for (d, z, ¢, A\) = (6,1,7/8,0)
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Conclusions

Diagonally oriented valleys occur.

Essential singularities exist on the boundary and tend to attract orbits.
Progress in a valley depends on the gradient and transverse Hessian.
Iterations are attracted to the valley at a rate independent of ¢ & a.
Greedy first steps are important.

Other implications for algorithm development are under consideration.

A visualization webpage is available at http:
//www.ohiouniversityfaculty.com/mohlenka/DSoTA/visual/

Thank you for your attention!
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