
Bifurcations of Random Differential

Equations with Bounded Noise

AMS Sectional Meeting

Boca Raton, October 2009

Todd Young

Department of Mathematics

Ohio University

Joint work with:

Ale Jan Homburg, University of Amsterdam

Ohio University – Since 1804 Department of Mathematics



Assumptions on the RDE

Random differential equations (RDEs)

ẋ = fλ(x, ξt) (1)

x ∈ M a smooth compact manifold.

Parameter λ ∈ R is varied.

ξt will be a realization of some noise process.

fλ(x, v) is a smooth vector field depending smoothly on λ ∈ R

and v ∈ ∆.

ξt takes values in a closed disk ∆ ⊂ Rn.

H1 For each x ∈ X, fλ(x, ·) is a diffeomorphism with a convex

range fλ(x,∆).
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The Noise ξt

ξt ∈ U = {ξ : R → ∆, ξ measurable}.

ξt is chosen “randomly” from U .

The flow defined by the shift:

θt : R × U → U , θt(ξs) = ξs+t,

is then a continuous dynamical system with the weak topology

on U .
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Existence, Uniqueness, Smooth Dependence

Since ξ ∈ U is measurable, and f is smooth and bounded, the

differential equation (1) has unique, global solutions Φt
λ(x, ξ)

(in the sense of Caratheodory), i.e.:

Φt
λ(x, ξ) = x +

∫ t

0
fλ(Φ

t
λ(x, ξ), ξs) ds,

for any ξ ∈ U and all initial conditions x in X, and the solutions

are absolutely continuous in t.

Solutions depend smoothly on λ.
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Minimal Forward Invariant Sets

A set F ⊂ X is forward invariant if

Φt
λ(F,U) ⊂ F (2)

for all t > 0.

F – the collection of forward invariant sets.

There is a partial ordering on F by set inclusion.

We call E ∈ F a minimal forward invariant (MFI) set if it is

minimal with respect to the partial ordering ≺.
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MFI sets are forward orbits

Proposition 1 Under assumption H1 an MFI set for (1) is

open and connected. The closures of distinct MFI sets are

disjoint. If x is any point in an MFI set E, then E is equal to

the forward orbit of x, i.e.

E = O+(x) ≡
⋃

t>0

Φt
λ(x,U).
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MFI sets support stationary measures

Under some additional assumptions on the noise, it can be

shown that the closure of each MFI set coincides with the

support of a stationary measure.
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1-d MFI sets, ẋ = f(x, ξ(t))

Let: f+(x) = maxv∈∆ f(x, v), f−(x) = minv∈∆ f(x, v)

Proposition 2 If (a, b) is an MFI set, then ∀x ∈ (a, b) we have

0 ∈ f(x,∆).

Proposition 3 If (a, b) is an MFI set then

f(a, v) ≥ 0 and f(b, v) ≤ 0 (3)

for all v ∈ ∆. Further f−(a) = 0, f+(b) = 0, f ′
−(a) ≤ 0 and

f ′
+(b) ≤ 0.
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Examples of MFI sets in 1-d

(a)

ba

f f− +

E

(b) − +
f f

E

b ca

(a) A stable one dimensional MFI set. Both endpoints of

E = (a, b) are hyperbolic. (b) A random saddle-node in one

dimension. E = (b, c) is minimal forward invariant.

Ohio University – Since 1804 Department of Mathematics



R2 - extreme vector fields and curves

x

Γ 2

Γ 1

F(x,D)

V1

V2

Lemma 1 MFI sets are bounded by extremal curves.
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Example. Perturbed linear stable node with repeated

eigenvalues but distinct eigenvectors

ẋ = −

(

1 0
0 1

)

x + ǫu

E = S

S = {x : 0 ∈ f(x,∆)} – singular set.

In this case the MFI set E is S.
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Example. Perturbed linear stable focus

ẋ = −

(

1 −b

b 1

)

x + ǫu

E

S
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Example. Perturbed linear stable node with distinct eigen-

values

ẋ = −

(

1 0
0 a

)

x + ǫu

0 < a < 1

S

E
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Example. Perturbed stable node with a single eigenvec-

tor

ẋ = −

(

1 1
0 1

)

x + ǫu

E

R

S
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Bifurcation of MFI sets

Definition 1 A bifurcation of MFI sets is said to occur in a

parameterized family of random differential equations if either:

B1 The number of MFI sets changes.

B2 An MFI set changes discontinuously with respect to the

Hausdorff metric.
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Example. Saddle-node bifurcation in 1-d

ẋ = a − x2 + ǫu
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(a) The deterministic saddle-node bifurcation at a = 0. (b)

The random bifurcation occurs at a = ǫ. (c) For a > ǫ ∃ a

trapping interval around the stable node.
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Saddle-nodes in 1-d

Theorem 1 The saddle-node is the only co-dimension one bi-

furcation in one dimensional RDE with bounded noise without

symmetries.
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Pitchfork bifurcation

ẋ = ax − x3 + ǫu
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Stable homoclinic bifurcation in planar flows

X = y

Y = x − x3 + δ
2(y

2 − x2 + x4

2 )y

ẋ = X − λY

ẏ = λX + Y

Deterministic homoclinic bifurcation:
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Random homoclinic bifurcation
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Phase portraits with δ = .6 and added noise with level ǫ = .8.

In the first plot (λ = −.01) there is a pair of disjoint invariant

densities. In the second plot (λ = 0), there is a single invariant

density. In the third plot (λ = .01), the support of the invariant

density has undergone a topological change.
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Notion of Stability

Definition 2 Denote by R∞ the space of bounded noise vector

fields f satisfying H1. Take as a topology on R∞ the C∞

topology on the vector fields f : X × ∆ → TX.

Definition 3 An MFI set E for f is stable if there is a neigh-

borhood U ⊃ E such that if f̃ is sufficiently close to f in R∞

then f̃ has exactly one MFI set Ẽ ⊂ U and Ẽ is close to E in

the Hausdorff metric. We say that f ∈ R∞ is stable if all of its

MFI sets {Ei} are stable.
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Isolated MFI sets are stable.

Definition 4 We say that an MFI set E for (1) is isolated

if for any proper neighborhood U (E ⊂ U) there is an open

forward invariant set F ⊂ U such that E ⊂ F , F contains no

other MFI set and Φt
λ(F,U) ⊂ F for all t > 0.

Theorem 2 Isolated MFI sets are stable.
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Codimension one bifurcations in 2-d

Theorem 3 There are three distinct codimension one bifuca-

tions of bounded noise RDEs on compact surfaces. These

are:

• Two sets of stationary points collide at a stationary point

on the boundary ∂E which undergoes a saddle-node bifur-

cation.

• An MFI set E collides with a set of stationary points outside

E at a saddle-point p.

• The Floquet multiplier of a non-isolated periodic cycle be-

comes one and then the cycle disappears.
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