Bifurcations of Random Differential Equations with Bounded Noise

AMS Sectional Meeting Boca Raton, October 2009

Todd Young Department of Mathematics Ohio University

Joint work with: Ale Jan Homburg, University of Amsterdam

Ohio University – Since 1804

Assumptions on the RDE

Random differential equations (RDEs)

$$\dot{x} = f_{\lambda}(x, \xi_t) \tag{1}$$

 $x \in M$ a smooth compact manifold.

Parameter $\lambda \in \mathbb{R}$ is varied.

 ξ_t will be a realization of some noise process.

 $f_{\lambda}(x,v)$ is a smooth vector field depending smoothly on $\lambda \in \mathbb{R}$ and $v \in \Delta$.

 ξ_t takes values in a closed disk $\Delta \subset \mathbb{R}^n$.

H1 For each $x \in X$, $f_{\lambda}(x, \cdot)$ is a diffeomorphism with a convex range $f_{\lambda}(x, \Delta)$.

Ohio University - Since 1804

The Noise ξ_t

 $\xi_t \in \mathcal{U} = \{\xi : \mathbb{R} \to \Delta, \xi \text{ measurable}\}.$

 ξ_t is chosen "randomly" from \mathcal{U} .

The flow defined by the shift:

$$\theta^t : \mathbb{R} \times \mathcal{U} \to \mathcal{U}, \qquad \theta^t(\xi_s) = \xi_{s+t},$$

is then a continuous dynamical system with the weak topology on $\ensuremath{\mathcal{U}}.$

Existence, Uniqueness, Smooth Dependence

Since $\xi \in \mathcal{U}$ is measurable, and f is smooth and bounded, the differential equation (1) has unique, global solutions $\Phi_{\lambda}^{t}(x,\xi)$ (in the sense of Caratheodory), i.e.:

$$\Phi_{\lambda}^{t}(x,\xi) = x + \int_{0}^{t} f_{\lambda}(\Phi_{\lambda}^{t}(x,\xi),\xi_{s}) \, ds,$$

for any $\xi \in \mathcal{U}$ and all initial conditions x in X, and the solutions are absolutely continuous in t.

Solutions depend smoothly on λ .

Minimal Forward Invariant Sets

A set $F \subset X$ is forward invariant if

$$\Phi^t_{\lambda}(F,\mathcal{U}) \subset F \tag{2}$$

for all t > 0.

 \mathcal{F} – the collection of forward invariant sets.

There is a partial ordering on \mathcal{F} by set inclusion.

We call $E \in \mathcal{F}$ a minimal forward invariant (MFI) set if it is minimal with respect to the partial ordering \prec .

MFI sets are forward orbits

Proposition 1 Under assumption H1 an MFI set for (1) is open and connected. The closures of distinct MFI sets are disjoint. If x is any point in an MFI set E, then E is equal to the forward orbit of x, i.e.

$$E = O^+(x) \equiv \bigcup_{t>0} \Phi^t_\lambda(x, \mathcal{U}).$$

MFI sets support stationary measures

Under some additional assumptions on the noise, it can be shown that the closure of each MFI set coincides with the support of a stationary measure. 1-d MFI sets, $\dot{x} = f(x, \xi(t))$

Let:
$$f^+(x) = \max_{v \in \Delta} f(x, v), f^-(x) = \min_{v \in \Delta} f(x, v)$$

Proposition 2 If (a, b) is an MFI set, then $\forall x \in (a, b)$ we have $0 \in f(x, \Delta)$.

Proposition 3 If (a, b) is an MFI set then

 $f(a,v) \ge 0$ and $f(b,v) \le 0$ (3) for all $v \in \Delta$. Further $f_{-}(a) = 0$, $f_{+}(b) = 0$, $f'_{-}(a) \le 0$ and $f'_{+}(b) \le 0$.

Examples of MFI sets in 1-d

(a) A stable one dimensional MFI set. Both endpoints of E = (a, b) are hyperbolic. (b) A random saddle-node in one dimension. E = (b, c) is minimal forward invariant.

\mathbb{R}^2 - extreme vector fields and curves

Lemma 1 MFI sets are bounded by extremal curves.

Example. Perturbed linear stable node with repeated eigenvalues but distinct eigenvectors

 $S = \{x : 0 \in f(x, \Delta)\}$ – singular set.

In this case the MFI set E is S.

Ohio University – Since 1804

Example. Perturbed linear stable focus

Example. Perturbed linear stable node with distinct eigenvalues

$$\dot{x} = -\left(\begin{array}{cc} 1 & 0\\ 0 & a \end{array}\right)x + \epsilon u$$

0 < a < 1

Example. Perturbed stable node with a single eigenvector

$$\dot{x} = -\left(\begin{array}{cc} 1 & 1\\ 0 & 1 \end{array}\right)x + \epsilon u$$

Bifurcation of MFI sets

Definition 1 A bifurcation of MFI sets is said to occur in a parameterized family of random differential equations if either:

B1 The number of MFI sets changes.

B2 An MFI set changes discontinuously with respect to the Hausdorff metric.

Example. Saddle-node bifurcation in 1-d

(a) The deterministic saddle-node bifurcation at a = 0. (b) The random bifurcation occurs at $a = \epsilon$. (c) For $a > \epsilon \exists a$ trapping interval around the stable node.

Saddle-nodes in 1-d

Theorem 1 The saddle-node is the only co-dimension one bifurcation in one dimensional RDE with bounded noise without symmetries.

Pitchfork bifurcation

$$\dot{x} = ax - x^3 + \epsilon u$$

Stable homoclinic bifurcation in planar flows

$$X = y \qquad \dot{x} = X - \lambda Y$$

$$Y = x - x^3 + \frac{\delta}{2}(y^2 - x^2 + \frac{x^4}{2})y \quad \dot{y} = \lambda X + Y$$

Deterministic homoclinic bifurcation:

Random homoclinic bifurcation

Phase portraits with $\delta = .6$ and added noise with level $\epsilon = .8$. In the first plot ($\lambda = -.01$) there is a pair of disjoint invariant densities. In the second plot ($\lambda = 0$), there is a single invariant density. In the third plot ($\lambda = .01$), the support of the invariant density has undergone a topological change.

Ohio University – Since 1804

Notion of Stability

Definition 2 Denote by R^{∞} the space of bounded noise vector fields f satisfying **H1**. Take as a topology on R^{∞} the C^{∞} topology on the vector fields $f : X \times \Delta \to TX$.

Definition 3 An MFI set E for f is stable if there is a neighborhood $U \supset E$ such that if \tilde{f} is sufficiently close to f in \mathbb{R}^{∞} then \tilde{f} has exactly one MFI set $\tilde{E} \subset U$ and \tilde{E} is close to E in the Hausdorff metric. We say that $f \in \mathbb{R}^{\infty}$ is stable if all of its MFI sets $\{E_i\}$ are stable.

Isolated MFI sets are stable.

Definition 4 We say that an MFI set E for (1) is isolated if for any proper neighborhood U ($\overline{E} \subset U$) there is an open forward invariant set $F \subset U$ such that $\overline{E} \subset F$, F contains no other MFI set and $\overline{\Phi_{\lambda}^t(F,U)} \subset F$ for all t > 0.

Theorem 2 Isolated MFI sets are stable.

Codimension one bifurcations in 2-d

Theorem 3 There are three distinct codimension one bifucations of bounded noise RDEs on compact surfaces. These are:

- Two sets of stationary points collide at a stationary point on the boundary ∂E which undergoes a saddle-node bifurcation.
- An MFI set E collides with a set of stationary points outside E at a saddle-point p.
- The Floquet multiplier of a non-isolated periodic cycle becomes one and then the cycle disappears.