The Matlab Workbook - A Supplement for

Calculus, Differential Equations and Linear Algebra

Steve Chapin and Todd Young

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OH 45701,

JANUARY 9, 2003

CoOPYRIGHT (©)2002 STEVE CHAPIN AND TODD YOUNG. ALL RIGHTS RESERVED.
E-mail address: chapin@math.ohiou.edu

E-mail address: young@math.ohiou.edu






Acknowledgment

The second author is grateful to Mary Beth Young who originally conceived of simple computer
homework as contained in the exercises in this book. We are grateful to Ohio University for
support of this project through the 1804 Fund. Thanks to Tsun-ho Liu who provided technical
assistance and to Kiffany Keyes to proofread the assignments. We are also grateful to our
colleagues and students at Ohio University for many helpful comments. Finally, special thanks
go to Larry Snyder, who helped with the preparation of many of the homework assignments

contained in this book.

iii



Contents

Acknowledgment

Chapter 1. Introduction
A Very Brief Intro to MATLAB

Chapter 2. Preliminary Exercises — Do Not Skip!!
1. Factoring Expressions and Solving Equations

2. Defining, Evaluating and Plotting Functions

Chapter 3. Differential Calculus
MATLAB Commands for Differential Calculus
1. Limits
2. Limits and Derivatives
3. Derivatives
4. Newton’s Method
5

Exponentials vs. Powers

Chapter 4. Integral Calculus and Series
MATLAB Commands for Integral Calculus
Indefinite Integrals
Definite Integrals and Numerical Approximations
Numerical Integration
Monte Carlo Integration
Hyperbolic Functions and the Gateway Arch
Improper Integrals

Summation of Series

Taylor Series

Chapter 5. Multiple Variable Calculus
MATLAB Commands for Multiple Variable Calculus
1. Plotting Curves
2. Polar Coordinates

iv

iii

10
11
12
13
14

15
16
17
18
19
21
22
23
24
25

26
27
28
29



Defining and Plotting a Function of Two Variables
Contour Plots

Partial Derivatives

Gradients

Lagrange Multipliers

® N @ o w

Double Integrals

Chapter 6. Differential Equations
MATLAB Commands for Differential Equations
Separation of Variables
Direction Fields
Homogeneous ODEs with Constant Coeflicients
Plotting Solutions to First Order Initial Value Problems
Linear First-order Equations
Linear Second-order Equations
A Spring-Mass System

Laplace Transforms

Linear versus Nonlinear

10. Special Functions

Chapter 7. Linear Algebra

MATLAB Commands for Linear Algebra
Matrix Operations
Solving Linear Systems
LU Decomposition
Least Squares
Eigenvalues and Eigenvectors
Eigenvalue Power Method
Eigenvalues by the QR Method

A

Chapter 8. Programming in MATLAB
Commands for MATLAB Programming

Programming in the Command Window

Writing and Running an m-file

Defining a function in an m-file

Determinates of Random Matrices

Cobweb graphs for discrete dynamical systems

Approximate Double Integrals

30
31
32
33
34
35

36
37
38
39
40
41
43
44
45
46
46
47

48
49
51
52
53
53
53
54
55

56
56
57
58
59
60
61
62



Chapter 9. Sample Solutions
1. Sample Solution For: ‘Factoring Expressions and Solving Equations’
2. Sample Solution For: ‘Defining, Evaluating, and Plotting Functions’
3. Sample Solution for ‘Indefinite Integrals’

Chapter 10. Summary of MATLAB Commands

63
64
65
66

67



CHAPTER 1

Introduction



A Very Brief Intro to Matlab

A few general principles

e Type commands at the prompt and press .

e Unless declared otherwise, variables are row vectors (1 X n arrays).

e The command syms x declares x to be a symbolic variable.

e MATLAB is case sensitive, i.e. X # z.

e The command clear will clear all variables. Always clear before starting a new
computation. The command clear will not clear the screen.

“;” suppresses the output.

e Ending a command with a semicolon

e Enter all commands exactly as given in the assignments.

e ans indicates the output from the preceeding command. Two useful commands are
pretty(ans) and simple(ans).

e MATLAB does both symbolic and numerical calculations.

e When you make a mistake, you do not have to retype the whole command. Use 1
and | to return to a line, correct the errors and re-press . (Sometimes you also

need to clear.)

e Access Help by clicking ‘ Help ‘ — ‘ Help Window

, or by typing helpdesk or helpwin.

e Text may be added to your work after the symbol %.

e Save, print and exit by clicking the icon.

e Many advanced procedures may be accomplished using Toolboxes.

e MATLAB may be used as a programming language.

e For a more details on MATLAB and how to use it we suggest: A Guide to MATLAB
for Beginners and Ezperienced Users, by B. Hunt, R. Lipsman, and J. Rosenberg,
Cambridge Univeristy Press, New York, 2001.



Some basic commands using a symbolic variable (try them).

syms x This makes a symbolic variable.
f = x*sin(x) This makes £ a symbolic function.
f1 = diff(f) f1 is the derivative of f.
f2 = diff(£,2) £2 is the second derivative of £.
F = int(f) F is the antiderivative of f.
int (£f,0,pi) This is a definite integral.
limit(log(cos(x))/x"2,0) MATLAB uses L’Hopital’s rule to find limits.
limit (log(x)~2/x,inf) Also for co/c0.
ezplot (£) Plot a graph using the default interval.
ezplot (f,0,4*pi) Plot a graph for specified interval.
polyn = x°5 - x74 - 7*x"3 + x"2 + 6%x

factor(polyn)

solve(polyn) .........cciiiiiiiiiiiiiiaaat This solves the equation “polyn = 0”
expr = cos(x)"5 + sin(x)"4 + 2*cos(x)”"2 - 2*sin(x)~2 - cos(2*x)

simple (expr)

ode = ’Dx = -a*x’

dsolve(ode, ’x(0)=3?)

Some basic commands using arrays.

t = 0:.01:8*pi; Makes t a vector with entries from 0 to 87 in .01 increments.
y = t.*sin(t); This evaluates ¢sin(t) for each entry of t.
plot(t,y) This plots the pairs of points (¢(k),y(k)) for k =1,2,....
x = -2:.05:2; y = x;

Z = sin(x’*y); mesh(Z) ’ means transpose.

A figure window will appear with a graph. Click on and select .

Point the cursor at the graph and “click and drag” to rotate the graph.
A=1[123;456;7810], C=1[12; 3 4; 5 6]

AxC multiplies the matrices.
b=1[123]", A\b solves Az = b by Gaussian elimination.



CHAPTER . 2
Preliminary Exercises — Do Not Skip!!

In these two preliminary exercises we consider one of the foundational issues that is needed to

use MATLAB intelligently. Namely
e Symbolic vs. Numeric computation

To illustrate the difference between the two, consider the equation
2 —2=0.
Manipulating this equation symbolically, we arrive at two solutions,

xzj:\/i.

If we enter the square root of 2 on a calculator and obtain
(1) 1.4121356237

then the calculator has performed a numerical calculation and output a numerical answer.
What we will mean by symbolic calculation is to manipulate symbols in a exact fashion. By
numeric, we mean to manipulate floating point numbers with a fixed number of digits, which
usually implies rounding off. Sometimes very simple operations qualify as both symbolic and
numeric, such as solving the equation 2z = 4, but usually an operation can be classified as

one or the other.

We need to distinguish the two types of computation because modern software packages like

MATLAB are capable of doing both types and there are important differences between the two.

The chief advantage of a symbolic computation is obvious; it is perfectly accurate, assuming
that it was performed correctly. Why then do anything else? One reason is that symbolic
computations are not always possible. For instance in the relatively simple case of finding the
roots of a polynomial. If the degree is greater than four, then it is known that in general the
roots cannot be found with symbolic computations. In this case we have no choice but to

approximate the roots using numerical computations.

Whereas symbolic computations are exact, numeric computations are usually approximations.
This is fine for most applications, but care must always be taken to ensure that the approx-
imation is accurate enough to suit the need. This can be tricky. For instance in the second

4



exercise we encounter graphing a function. When a computer graphs a function it does a finite
number of numeric approximations and then “connects the dots”. As you will see, this can

have pitfalls.



1. Factoring Expressions and Solving Equations

(1) At the prompt, type the following commands and press :
clear

syms x

(x-1)*(x-2) *(x-3) * (x-4) *(x-5)
expr2 = expand(exprl)

exprl

factor (expr2)
S01lve (exXpr2) ...t This solves the equation expr2 = 0
Explain what happened. What is the relationship between solving and factoring?
(2) Type and enter:
expr3 = x"4 + 3*x"3 + 3*x"2 + x + 3
factor(expr3)
solve (expr3)
double (ans)
Explain what happened. Explain why an exact, symbolic solution may not be as
useful as an approximation.
(3) Try to solve expr3 - 3. Why is the answer so nice?
(4) Make expr4 beequal to exprl + 1 . ( exprd = exprl + 1)
Try to factor expr4 and to solve expr4 = 0 .
Why do you think MATLAB produces a numerical solution (for solve), rather than
symbolic? Hint: Is it possible in this case to give a symbolic solution? Why?
(5) Prepare a brief (less than 1 page) written report answering all the questions. Use

complete sentences and standard mathematical notation. Do not get a printout.

The user learns basic algebraic manipulation commands and is led to consider the difference between
numerical and symbolic solving techniques. The user must confront the foundational fact that a

symbolic solution is not always possible.



2. Defining, Evaluating and Plotting Functions

(1) At the prompt type: syms x and then press .

Now type f = sin(x) and then press .
(2) Type (at the prompt and then press ):

subs(f, 2)
subs(f, ’2’)
double (ans)
Which of the above answers are numerical and which are symbolic? (You may want
to type: help subs and help double for explanations)
(3) Enter: ezplot(f)
(4) Following the example above, define and plot the function g(x) = exp(x) by typing:
syms x
g = exp(x)
ezplot (g)
Then adjust the domain in the plot by typing: ezplot(g, -2, 2)
(5) Enter: ezplot(x~2)
(6) Plot function sqrt(x~2-.00001) by typing: ezplot(sqrt(x~2 - .00001)).
Plot the function x~7 - x by typing: ezplot(x~7 - x).
Because of the domain chosen by the computer, important features of the graphs are
missing. What are they? Try adjusting the domains until these features are shown.
(7) Plot the function sin(x~5) by typing: ezplot(sin(x~5)). A computer plots a
function by locating a finite number of points and “connecting the dots”. How does
this go wrong for sin(x~5)?
(8) Prepare a brief (< 2 page) written report describing what happened, answering all the
questions and sketching the plots. Use complete sentences and standard mathematical

notation. Do not get a printout.

These exercises introduce basic commands for defining and plotting functions. They consider the
difference between numerical and symbolic evaluation of a function and the processes by which the

software makes plots. They address issues of scale and the effects of rapid oscillation on plotting.



CHAPTER 3

Differential Calculus

One of the great successes of symbolic computation programs is that the derivative of almost
any function can now be produced symbolically at incredible speed and with absolute relia-
bility. It is when one begins to use the derivative in applications that problems begin. For
instance, when one wants to determine an extreme value of a functions, then one usually must
try to solve the equation

F(@) =o.
As seen in the previous chapter, solving equations can quickly become a nontrivial affair.

We begin this chapter with some exercises involving limits and the definition of derivative.
The main purpose is to assist students in grasping these topics that have proven to be difficult
for many. Along the way we review issues of symbolic vs. numeric computation and difficulties
in reliability of computer generated plots. We also explore Newton’s Method, which is usually
the student’s first encounter with an actual numerical algorithm. We look at issues of speed

of convergence as well as potential pitfalls of the method.



Matlab Commands for Differential Calculus



1. Limits

(1) Try the following commands (at the prompt and press ):

(a) x = sym(’x’)

(b) £ =x"2

(c) limit(f, 2)

(d) 1limit(f, inf)

() 1limit(1/x, inf)

(f) limit(log(abs(x)), 0)

(g) limit(1/x, 0)

(h) Explain what happened in each example, that is, why did it give the answer it

did.

(2) Use MATLAB to find the limits of the following functions at the given points:

(a) sqrt(x) at x = 0 (Type as: limit(sqrt(x), O))

(b) sart(x"2 - .00001) at x = 0 (Typeas: limit(sqrt(x~2 - .00001), O))
(c) sqrt(x) at x = -1 (Type as: limit(sqrt(x) , —1))

(d) sin(x) at x = inf (Type as: limit(sin(x), inf))

() sin(1/x) at x = 0 (Type as: limit(sin(1/x), O))

(f) Explain what happened in each example.

(3) Prepare a brief (less than 1 page) written report answering all the questions. Use

complete sentences and standard mathematical notation. Do not get a printout.

The user encounters usual limits, limits at infinity and infinite limits, complex limits and oscillatory

functions.



2. Limits and Derivatives

(1) Try the following commands:
syms X h
f x"3+x"2+x+1
m (subs(f,x+h)-f)/h
f1 = limit(m, h, 0)
Explain what happened.

(2) Try the following sequence:
syms x h
f = exp(sin(x))
m = (subs(f,x+h)-f)/h
f1 = limit(m, h, 0)
subs(f1, pi)
X =-10:.05:10; «cuoiiiiii it Makes an array of x values.
F=subs(f, X)j ciueiriiiiii i Makes an array of f(z) values.
F1 = subs(f1, X);
plot(X, F, ’b’, X, F1, ’r’)
Explain what happened.

(3) Now repeat the steps above for the function:
f(z) = (z— 1)2\/E (f = (x-1)"2*sqrt(x)).

Is the function defined for all real numbers? What about the derivative? How is the
graph misleading?

(4) Next repeat this procedure for the function f(z) = (z — 1)2z/3. Are the function
and its derivative defined for all real numbers? How is this graph misleading?

(5) Use ezplot(£f) and ezplot (£1) to get another picture for f and f’ from (4). In what
ways are these graphs misleading?

(6) Prepare a brief (less than 1 page) written report answering all the questions. Use

complete sentences and standard mathematical notation. Do not get a printout.

This assignment is intended to reinforce the user's understanding of the definition of the derivative.

They should think about the domains of a function and its derivative.



3. Derivatives

(1) Try the following commands:

(a) syms x

(b) £ = x"2

(c) f1 = diff(f)

(d) X =-3:.05:3; ............ Makes X into an array with entries from -3 to 3
() F = subs(f, X);

(f) F1 = subs(f1, X);

(g) plot(X, F, ’b’, X, F1, ’r?)

(h) Explain exactly what happened.

(2) Repeat the above procedure for the function
x5+ 23 +2

8o 1 (Input as: g = (x"5 + x"3 + 2) / (8xx + 1)).

g(z) =

(3) Use the command ezplot(gl, [0 3]) and then change the interval until you can
accurately guess a solution of g’(x) = 0. Then try:
(a) Enter solve(gl) and describe the results. Which part of the output is rele-
vant? Did the computer find this output symbolically or numerically?

(b) What is the percentage error of your guess.

(4) Prepare a brief (less than 1 page) written report answering all the questions. Use

complete sentences and standard mathematical notation. Do not get a printout.

The user must consider the derivative as a function, and they must consider issues of scale in

plotting functions with asymptotes.



4. Newton’s Method

(1) (a) Try the following commands (at the prompt and press ):
Syms x
format 1ong .....cciiiiiiiii et Sets displayed digits to 15.
f=x"3-3*xx"2 + 1
f1 = simplify(diff(f))

g = simplify(x - £/£f1)
p=.1
p = subs(g, p)

(b) Repeat the command p = subs(g, p) until p stops changing. (Use the up-
arrow key to recall the command instead of typing it.)
(c) Assuming the final value is correct, how many steps did it take to get 7 decimal
places of accuracy? How many steps for 14 decimal places?
(2) (a) Type p = .5 and repeat p = subs(g, p) until p stops changing. To what
do the approximations converge this time?
(b) Repeat, but start with p = 3.0.
(c) Why can Newton’s method give three different answers for three different starting
points? (Hint: Use ezplot(f) to look at f(z).)
(3) Set p = .11065934333376 and repeat p = subs(g, p) until it converges. How
many iterations does it take this time?

(4) Repeat the process in (1), starting with p = .1 for the function

_ 4 1/3
flz) = % (= a-3/8 /&) )
T

Write down the first 20 iterations. Do they seem to be converging to anything? Plot
them on the interval [0, 1].
Does f(z) = 0 have a solution on [0,1]7 Try that point as the initial guess and
see what happens.
Next, try starting with p = 0.0. What is the value of f at 0.07
(5) Can one always rely on Newton’s method? What are some things to be careful about?
(6) Prepare a brief (less than 1 page) written report answering all the questions. Use

complete sentences and standard mathematical notation. Do not get a printout.

The user observes that Newton’s method converges very fast for the certain functions and certain
starting points. The convergence can be slow for other starting points and the final answer can
depend on the starting point. Further, some functions lead to Newton’s method iterations which

are actually chaotic (random-like).



(1)

5. Exponentials vs. Powers
Enter the following sequence commands:

Important note: Do not omit the semicolons! Also, do not omit the . before
the = !
(a) x1 = -1.15:0.01:1.15; .. (This makes x1 a vector with entries from —1.15 to

1.15 in .01 increments.)

(b) x2 = -1.39:0.01:1.39;
(€) y1 = x1.710; oovviiiiii i (This evaluates x1'0 for each entry of x1.)
(d) y2 = exp(x2);
(e) plot(x1, yi1, ’b’, x2, y2, ’r’)
These plots of y = z'° and y = e® suggest that the equation z'° = e® has two

solutions — one positive and one negative. Approximate these two solutions (to three

“zoom in” click on the button that looks like a

decimal places) by “zooming”. (To
magnifying glass with a plus sign, and then click on the graph. To “zoom out” select
the magnifying glass with the minus sign.)

Explain why there must be another positive solution of 210 = e* larger than the one
that you found in #1.

By changing the beginning and ending values of x1 and x2 (you may leave the
increments the same) and plotting as above, determine an interval that reveals this
larger solution. (Note. You can use the up-arrow key to do this, but you must
reevaluate y1 and/or y2 each time you change x1 and/or x2.)

Approximate this solution (to two decimal places) by “zooming”.

Explain why it may be necessary to use several different domain intervals when study-
ing computer plots.

On a separate piece of paper, prepare a brief written report giving explanations where
requested and answering all the questions. Include all of the approximate solutions.
Use complete sentences and use standard mathematical notation. Do not hand in a

printout.

This assignment reinforces the fact that the exponential function, exp(x), will eventually exceed

any power of x. It also illustrates the importance of scale when considering computer plots.



CHAPTER 4
Integral Calculus and Series

Since integration is just the inverse process of differentiation, one might guess that the tech-
niques for computing them would be similar. In practice this is not the case. Whereas the
derivative of any elementary function can be found symbolically, most elementary functions
cannot be integrated symbolically. In fact, it is known that the antiderivatives of most ele-
mentary functions cannot be expressed in terms of elementary functions. In applications this
often leads to the need to calculate definite integrals numerically. As with any other numeric
calculation, accuracy becomes an issue. One of the main problems in obtaining accurate in-
tegrals numerically is similar to the problem of obtaining accurate graphs: the computer only
handles a finite amount of discrete information. There might not be enough of this information

to accurately determine what the function is doing.

In our exercises on series the main point we want to make is that speed of convergence matters.
One of the primary uses of series is to approximate functions. The series is an infinite symbolic
expression, but for approximations only a finite number of terms can be used. The accuracy of
course depends on the number of terms used, and one must use as many terms as necessary to
achieve the desired accuracy. The more terms needed for accuracy, the slower the computation
will be. If the number of terms need is too large, then the method is not practical. Thus, the

faster a series converges the better.
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Matlab Commands for Integral Calculus



1. Indefinite Integrals

(1) Enter the following sequence commands:
(a) syms x
(b) int(x"2)
(c) diff(ans)
(d) Explain exactly what happened.

(2) Repeat steps (b)-(c) for the function:
(z—1D(z+2)(z2—-1)(z+1)

(Typing: int(x / ((x-1) (x+2)(x"2-1) (x+1))) for command(b))
Then enter the command: simplify(ans)

(3) Repeat the above sequence for the following functions:

(a) 1/(1+ 3z +z°) (Typing: int(1/(1 + 3*x + x°5)) for command (b))
(b) sin(sin(z?)) (Typing: int(sin(sin(x"3))) for command (b))
(c) (1+ x8)3/4 (Typing: int((1 + x°6)~(3/4)) for command (b))

Why do you think that MATLAB was not able to find antiderivatives for some of these
functions? Why was it successful for the rational function in #2, but not successful
for the rather simple functions in #37

(4) Prepare a brief (< 1 page) written report answering all the questions. Do not get a

printout. Use complete sentences and standard mathematical notation.

This assignment introduces the command for indefinite integrals. MATLAB is not able to find an
integral for some functions. It is a fundamental fact that not all functions have an antiderivative in
terms of elementary functions. The difference between this concept and the concept of integrability

should be considered.



2. Definite Integrals and Numerical Approximations

(1) Enter the following sequence commands:

(2)

format long

syms x

Int(x72, 0, P1)  teiiii Computes symbolically.
double(ans) ...t Converts to a numerical value.
quad(’x.72?, 0, pi) .......... Computes numerically using Simpson’s method.

Use both int and quad to integrate the following function on the interval [0, 1/2]
(When you use quad, you must follow the example and enclose the function in > ?,
and the operations: “* / ~” must be typed as: “.* ./ .~ ”. This is because quad
treats = as a matrix.):
T
(z —1)(z+2)(z? —1)(z+1)

Which answer do you trust?

Use both int and quad to integrate the following functions on the interval [0, 1]:
(a) 1/(1+ 3z + %) . Type as:
int(1/(1 + 3*x + x°5), 0, 1)
double (ans)
quad(’1./(1 + 3.*x + x.75)’, 0, 1)
(b) sin(z?) . Type as:
int(sin(x~3), 0, 1)
double (ans)
quad(’sin(x."3)’, 0, 1)
(c) (1+a8)3/+. Type as:
int((1 + x76)°(3/4), 0, 1)
double (ans)
quad(’ (1 + x.76).7(3./4)’, 0, 1)
How many decimal places of accuracy does it seem like you get in each? Which way
is more accurate for these integrals?
Prepare a brief (< 1 page) written report describing what happened and answering
the questions. Use complete sentences and standard mathematical notation. Do not

get a printout.

The user should observe that even for some relatively simple integrands, the integrals cannot be

found in terms of elementary functions. However the computer can obtain a numerical answer

using piecewise polynomial approximations to the integrand (Simpson’s method).



3. Numerical Integration

(1) Enter the following sequence commands:
maple(’with(student)’) ................ This adds the Maple ‘student package’.
syms x
maple (’rightsum(3*x~2, x=0..2, 10)’)
maple(’evalf (%))
Here 10 is the number of intervals used. How close is the right sum to the exact value
of the integral?
(2) Next try:
(a) maple(’leftsum(3*x"2, x=0..2, 10)?)
maple(’evalf (%))
(b) maple(’trapezoid(3*x~2, x=0..2, 10)’)
maple(’evalf (%))
(c) maple(’middlesum(3*x~2, x=0..2, 10)’)
maple(’evalf (%))
(d) maple(’simpson(3*x~2, x=0..2, 10)’)
maple (’evalf (%))
What are the errors in each of the above? (Compare it with the exact value that you
can calculate by hand.) Explain why the approximation gets better as we go down
the list.
(3) Repeat the above sequence but change the number of intervals used from 10 to 1000
in the command.
(4) Use trapezoid and simpson with 1000 intervals on each of the following func-
tions:
(a) sin(sin(z)) with x=0. .2, by typing the following commands:
maple (’trapezoid(sin(sin(x)), x=0..2, 1000)°’)
maple (Cevalf (%) ’)
maple (’simpson(sin(sin(x)), x=0..2, 1000)°’)
maple (Cevalf (%) ’)
(b) x5 cos(z®) with x=0..5%Pi~(1/6) ................. Maple uses Pi, MATLAB pi
by typing the following commands:
maple (’trapezoid ((x~5)*cos(x"6)), x=0..5%Pi~(1/6), 1000)’)
maple (’evalf (%))
maple (’simpson((x~5)*cos(x"6)), x=0..5%Pi~(1/6), 1000)’)
maple (’evalf (%))



(5) Use the MATLAB command int(f(x), a, b) to evaluate the integral for each of
the two functions in #4. For example, for the first one use format long followed by
int(sin(sin(x)), 0, 2) and double(ans). How close were the approximations

in 4. to the approximations obtained here? Was 1000 big enough for these integrals?

(6) Using complete sentences and standard mathematical notation, prepare a brief (< 1

page) written report answering all the questions. Do not get a printout.

The user compares some basic numerical schemes and considers their accuracy. The effect of

partition size and the problem of rapid oscillations are also considered.



4. Monte Carlo Integration

(1) Enter the following sequence commands:
(a) n = 10
(b) total=0; for i=1:n, total=total+rand~3; end; avg=total/n
(c) Use the up-arrow key to recall this line and then press enter again.
(d) Obtain 10 estimates this way and record the values you get along with the abso-

lute error of each estimate. You can have MATLAB calculate the absolute error for

you conveniently by including at the end of line of #1(b): error = abs(.25 - avg).

(e) Explain why this is an approximation of fol 23 dz.

(2) Enter the command n = 100 and use the up-arrow key to recall the line in
#1(b) again. Press the enter key to execute this line. Obtain and record 10 estimates
this way along with the absolute errors.

(3) Repeat this process using n = 1000, n = 10000, and n = 100000.

(4) Make a chart showing the relationship between the sample size n and the arithmetic
mean of the absolute errors of the estimates with sample size n. Use the data to
write a formula which approximately describes the relationship (Try E,, & Kn " and
use logarithms to determine K and r).

(5) Compare the accuracy of this method with the Trapezoid and Simpson’s methods of
numerical integration. (For the Trapezoid rule r = 2 and for Simpson’s rule r = 4.)

(6) Prepare a brief written report answering all the questions. Use complete sentences

and standard mathematical notation. Do not get a printout.

Many people are surprised that this technique for numerically approximating an integral is used

sometimes in practice because it is efficient in higher dimensions.



5. Hyperbolic Functions and the Gateway Arch

The Gateway Arch in St. Louis has the shape of an inverted catenary. Rising 630 feet at its

center and stretching 630 feet across its base, the arch’s shape can be described by

y = —127.7cosh(z/127.7) + 757.7for — 315 < z < 315.

(1) Enter the following sequence commands:
(a) syms x
(b) £ = -127.7*cosh(x/127.7) + 757.7
(c) ezplot(f, -315, 315)
Does the graph look like an arch?

(2) To compute the area beneath the Gateway Arch enter the following sequence of
commands:
(a) int(f, -315, 315)
(b) double(ans)

(3) To compute the length of the Gateway Arch enter the following sequence of com-
mands:
(a) int(sqrt(1+diff(f)~2), -315, 315)
(b) double(ans)
Are you surprised that the symbolic answer is expressed in terms of exponential
functions rather than hyperbolic functions? Why or why not?

(4) On a separate piece of paper, prepare a brief written report describing what happened
and answering all the questions. Include the results of all of the computations. Use
complete sentences and use standard mathematical notation. Do not get

a printout.

Students may have little or no exposure to hyperbolic functions in their calculus courses. This

assignment gives a real-life application of hyperbolic functions.



6. Improper Integrals

(1) Enter the following sequence of commands:

syms x

int(1/sqrt(x"6+1), O, inf) ........ ...l Calculates symbolically.
double(@ansS) ...t Converts to a numeric format.
quadl(’1./sqrt(x."6+1)?, 0, inf) ................... Calculates numerically.

(2) Use the commands above to evaluate the following integrals (you will encounter error

messages in some of them):

* 1

(a) / B (Use 1/x~(2/3) .)
0% 1

(b) /1 T+ ldx
®Inz

(c) / T reereeeeeresseeei (Use log for natural logarithm.)
1

(d) /0 ” sin?(z)dz.

(3) Try to use MATLAB to evaluate the following functions using commands in #1:

(a) /1 12da:
/—dw

(4) What are some problems with calculating improper integrals numerically?
(5) Try the following;:
int(1/x°5, 1, inf)
int(sin(x~3)/x"5, 1, inf) .
Comparing the integrands of these two integrals, should the second one converge?
What might be causing MATLAB to make this mistake?
(6) Prepare a brief (< 1 page) written report describing what happened and answering
all the questions. Use complete sentences and standard mathematical notation. Do

not get a printout.

This exercise explores improper integrals both symbolically and numerically. Evaluating improper
integrals symbolically is precarious because it is hard for the computer to handle the symbol oo
correctly. Evaluating numerically is difficult because one cannot actually compute all the way to

00, one must stop at some finite place.



7. Summation of Series

(1) Enter the commands:
syms x k
format long
(2) Enter: symsum(.57k,0,inf)
What kind of series is this? Is the result of the computation an approximation or is
it exact? Was it done numerically or symbolically?
(3) Enter: symsum(.5"k, 0, 10) followed by double (ans).
Here n = 10. Increase n until 5 decimal places of accuracy are reached.
(4) Enter: symsum(.99°k, 0, inf) and symsum(.99°k, 0, 10)
Again increase n until 5 decimal places of accuracy are reached. Compare this with
the value of n in the previous computation, i.e., what is the difference and what causes
it?
1
(5) Try to repeat the process used in #2 and #3 for the series Z i Using an integral

k=1
estimate (by hand), how many terms are needed for 5 decimal places accuracy? What

makes the convergence so slow?

(6) Try to guess what the results of the command: symsum(x"k/sym(’k!’),k,0,inf)
will be, then enter it. Think about how amazing the program is.

(7) Prepare a brief (< 1 page) written report describing what happened and answering
the questions. Use complete sentences and standard mathematical notation. Do not

get a printout.

Rate of convergence is considered. For series to be useful for calculations which are used often,

convergence must be relatively fast.



8. Taylor Series

MATLAB has an interactive Taylor series calculator called taylortool. It plots f and the
N-th degree Taylor polynomial on an interval. After taylortool is started, we can change f,

N, the interval, or the point a.

(1) (a) Enter the command: taylortool(’sin(x)’)

(b) In the taylortool window, change N to be 3. You can change the degree N using
the buttons >> or <<. Also you can just enter the value for N in the box for N.

(c) For what domain does the Taylor polynomial appear to be a good approximation
of the function?

(d) Now use the button >> to increase N until the approximation appears to be
accurate on the whole interval.

(e) For the degree N above, use Taylor’s Formula (by hand) to find an upper bound
on the error of the approximation.

T

(2) In the taylortool window, change the function to f(z) = e” (use exp(x)), the
interval to [-3, 3] and N to 3. Repeat the process above.

(3) Repeat the above process for sin(e®) on the interval [0,3]. What problems do you
encounter. What do you think causes this? Does sin(e®) equal its Taylor series?
For roughly what range of z and N would Tn(z) be a practical approximation tool?
What might be a more reasonable strategy for approximating sin(e®)?

(4) Prepare a brief (< 1 page) written report describing what happened and answering
the questions. Use complete sentences and standard mathematical notation. Do not

get a printout.

The taylortool can help us gain some appreciation for the loss of accuracy of the Taylor approx-
imation as x varies farther from the approximation point a. We also encounter the difficulty of
approximating a function that oscillates. Although a Taylor Series does actually equal a certain
function, computers can only do polynomial operations. So for instance, the sine function on
calculators or computers must be approximated using polynomial computations and knowing the

accuracy is important.



CHAPTER 5

Multiple Variable Calculus

One of the good features of MATLAB and similar programs is that they can be used to visualize
two and three dimensional mathematical objects. However, just as computer plots of single
variable functions can be misleading or even wrong, so too can plots of higher dimensional
object have problems. The main difficulty is the same as for single variable plots, i.e. the
computer can only represent a finite amount of information, but a function contains infinite
information. A problem which is unique to three dimensional object, such as the graph of a
function of two variables is that one must consider it from various angles. MATLAB allows the
user to rotate an object and one should always take advantage of this feature.

Applications of multiple variable calculus, such as the method of Lagrange multipliers, often
lead to the need to solve a system of equations with multiple variables. Unless the system is
linear, solving the equations can be difficult and often requires numerical method, such as a

higher dimensional version of Newton’s method.
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Matlab Commands for Multiple Variable Calculus



1. Plotting Curves

(1) Enter the commands:

ezplot(’x"2 + y~2 = 9?)
ezplot(’x"2 + x*y + y~2 = 97)
ezplot(’x"2 - y~2 = 9?)

ezplot(’x"2 -y = 97)
What is the geometric object in each of the above?
(2) Use ezplot to plot the equations:
sin? z + sin?y — log(zy) =0 (Use ezplot(’sin~2(x)+sin"2(y)-log(x*y)=0"))
P +ay=0 (Use ezplot(’x"5 + y°5 + x*y = 07%))
x +y =100 (Use ezplot(’x + y = 100?))
Are these plots produced numerically or symbolically? Sketch the graphs for your
report and discuss any problems encountered.
(3) Try the following commands:
t = 0:pi/50:10%pi;
plot3(sin(t), cos(t), t)
Sketch the graph for your report.
(4) Try the following commands:
t = 0:1:10%pi;
plot3(sin(t."2), cos(t."3), t)
Eplain why the plot looks as it does.
(5) Try the following commands:
t = 0:pi/50:10%pi;
plot3(sin(t."2), cos(t."3), t)
Explain why the plot looks as it does.
(6) Using complete sentences and standard mathematical notation, prepare a brief writ-

ten report. Do not get a printout.

The user plots curves given both by equations and by parametric functions. The user also encounters

difficulties with under-sampling and with choice of domain.



2. Polar Coordinates

(1) Enter the following sequence commands:
sSyms t
T = COS(A¥E) ot e Use t in place of 6.
ezplot(r*cos(t), r*sin(t), [0,2*pi])
Explain exactly what happened.
(2) Plot the polar equations r = cos(nf) and r = sin(nf) for several positive integers n.
(Use the 1 key.) Find a formula for the number of loops.
(3) Plot the polar equation r = sin(p#/q) for various integers p and q, satisfying
p > q > 0. Write p/q in lowest terms and plot over the interval [0, 27q]. Find a
formula for the number of loops.
(4) Plot the polar equation r = sin(v/260) on the interval [0, 1007]. Explain the resulting
plot.
(5) Plot the polar equation r = e“*? — 2c0s40 + sin®(6/12) for 0 < 6 < 24x. (This curve
was discovered by Temple H. Fay.)
(6) On a separate piece of paper, prepare a brief written report describing what happened
and answering all the questions. Use complete sentences and use standard mathe-
matical notation. Hand-in sketches of graphs or computer plots as directed by your

instructor.

Polar equations can be plotted by transforming them into parametric equations.



3. Defining and Plotting a Function of Two Variables

(1) Enter the following commands:
syms X y
ezmesh(sin(x)*cos(y),[0,10,0,10])

(2) Click on and then click . Point at the graph, press the left mouse
button and hold it down, and then move the pointer around slowly. The graph should
rotate. Move it until you find the best picture possible (in your opinion).

(3) Use ezmesh to plot the function f(z,y) = 2% — y?. First use the same domain as in
#1 and then use [-2, 2, -2, 2]. Which is a better picture?

(4) Plot the function f(z,y) = sinz® * cosy using the default domain, i.e. omit it from
the command. What are the problems with the resulting graph?

(5) Carefully sketch by hand the “best” graphs for the two functions in #1 and #3. Be
sure to clearly label axes.

(6) Explain briefly why the plot of the function in #4 does not represent the true graph

of the function. Use complete sentences and standard mathematical notation.

The goal of this project is to familiarize the user with the higher dimensional plotting capabilities
of the program and to introduce them to the notion that views and domains must be adjusted to

obtain a useful picture. The problem of plotting rapid oscillations is reviewed.



4. Contour Plots

(1) Enter the following commands:
[X, Y] = meshgrid(-1:.2:1);
Z=X."2-Y.72;
contour (Z)
Notice the labelling of the axes. In order to fix this enter instead: contour(X, Y, Z)
(2) Also try the following variations and report what happens:
contourf (X, Y, Z)
contour(X, Y, Z, 10)
contour(X, Y, Z, 20)
contourf (X, Y, Z, 20)
What is the problem with the last couple of plots?
(3) Now try the following alternative way to make contour plots:
syms x y
ezcontour(x"2 - y~2)
(4) Try both commands above to plot the level curves of z = /1 — z2 — y2. Notice the
squiggles in the curves near the edge. Should those be there? Can you find a way to
improve this?

(5) Write a brief report, using complete sentences and standard mathematical notation.

The goal of this project is to familiarize the user with the contour plot capabilities of the program.

They should notice that the methods the program uses to produce the plots have limitations.



5. Partial Derivatives

(1) Enter the following commands:

syms x y

f = xxyx(x"2-y72)/(x"2+y"2)

fx = diff(f ,x)

fx = simplify(fx)

subs(fx, {x, y}, {0, y}) oo This is f,(0,y).
(2) Define f(0,0) =0 and compute, by hand,

Why is it necessary to use the definition to compute f;(0,0)?
(3) Try: fy = simplify(diff(f,y))
subs(fy, {x, y}, {x, 0}) ..o This is fy(z,0).
Then, compute fy(0,0) by hand.
(4) Compute, by hand,

fzy(0,0) = (fz)y(0,0) = ,11_1% fx(0,%) ;fﬁﬂ(ﬂ’o)

What do you notice about fz,(0,0) and f,,(0,0)?
(5) Try: fxy = diff(fx, y)
fxy = simplify(fxy)

fy(h,0) — £,(0,0)
h

and  fy;(0,0) = %E)%

ezmesh (fxy)
What do you notice about the graph of f;,?
(6) Either obtain a printout of the graph, or, carefully sketch it by hand, making sure to
clearly label axes.
(7) Using complete sentences and standard mathematical notation, write a brief report,

showing your hand calculations and answering all the questions.

The user is reminded of the definition of derivative and encounters a situation where it must

be used. The user also encounters a situation where second derivatives are not continuous and

fwy 7é fyac-



6. Gradients

(1) Enter the following commands:

[X, Y] = meshgrid(-2:.2:2);

Z = X.xexp(-X."2 - Y."2);

mesh(X, Y, Z)

Rotate this plot into various positions until you fully understand the shape.

(2) Next enter the following:

[DX, DY] = gradient(Z);

contour (X,Y,Z)

hold on

quiver(X,Y,DX,DY)

hold off
(3) Repeat the above steps for the functions: f(z,y) = exp(—z%—%?) and f(z,y) = z+y.

(4) Write a brief report, using complete sentences and standard mathematical notation.

The goal of this project is to familiarize the user with the vector field plot capabilities of the

program and aid in the understanding of the meaning of the gradient.



(1)

(3)

(4)

7. Lagrange Multipliers

To find the points on the ellipse 422 4+ 9y? = 36 that are nearest to and farthest from
the point (1,1), using the method of Lagrange multipliers, one needs to solve the

system of equations
2(z—-1) -8\ =0
2y —1) =18y =0
42° + 99> — 36 = 0

Carefully derive this system by hand. Do NOT try to solve the system by hand.
Instead, solve the system using the commands:

® SYmS L X ¥ .iiiiiiiiiiii (Note that we use “L” instead of “A”.)

o [L,x,y] = solve(2x(x-1)-8*L*x, 2%(y-1)-18*L*y, 4*x~2+9%y~2-36)

e double([L,x,y]) (Elements in square brackets must be in alphabetical order.)
Explain what happened. What is the nearest point? What is the farthest point?
Give solutions to four decimal places.

Adapt the procedure in #1 to find the points on the ellipsoid
642 + 144y? + 362% = 576

that are nearest to and farthest from the point (1,1,1). Write down the system you
are solving and answer the questions above for this example.

What are your observations about symbolic versus numerical computations from #1
and #27

Using complete sentences and standard mathematical notation, write a brief report

(1 page only), showing your hand calculations and answering all the questions.

The system of equations resulting from relatively straightforward Lagrange multiplier problems can

be very difficult, if not impossible, to solve in closed form. In this exercise MATLAB is used solve

such systems. Students are asked to compare symbolic versus numerical solutions.



8. Double Integrals

(1) Enter the following commands:

format long ..........cooiiiiit... Sets the number of digits displayed to 15.
f = inline(Px*y™27) L. Defines a function.
£(2, 3)

dblquad(f, 0, 1, 0, 1)
Calculate this double integral by hand to confirm the answer. To get an explaination
of the command, you may want to enter: help dblquad

(2) Next try to use dblquad to integrate the following functions on the same domain as

above:
f = inline(’x"2%y~2?)
f = inline(’x. *y~2?)
f = inline(’x.%*y."2?)

Calculate this double integral by hand to determine which of the outputs is correct.
You should conclude the following: for the dblquad command to work properly, x
must be a vector and y must be a scalar.
(3) The following is a trick that can be used for double integrals on regions that are not
square:
f = inline(’ (x.72%y"2) .*(x+y <= 1))
dblquad(f, 0, 1, 0, 1)
This should calculate the integral of x?y? on the triangle with corners at (0, 0), (1,
0), and (0,1). Calculate this integral by hand to comfirm the calculation above.
(4) Write a brief report including your hand calculations. Use complete sentences and

standard mathematical notation.

The goal of this project is to familiarize the user with the double integration capabilities of the

program. Just as hand calculations of multiple integrals are tricky, so are computer calculations.



CHAPTER 6
Differential Equations

MATLAB can be used both symbolically and numerically to study differential equations. For
instance, if the equation is separable, then one can simply use MATLAB’s symbolic integration
command, ‘int’, to find the antiderivatives of both sides. MATLAB also has a symbolic com-
mand ‘dsolve’, that tries to solve initial value problems symbolically, even when the equation,
or the initial conditions involve symbols. For solving numerically, MATLAB provides several
algorithms, including ‘ode45’, which employs the Runga-Kutta45 method, the most commonly
used algorithm in applications.

When using ‘ode45’ for second or higher order equations, the equation must first be put into

the form of a system of equations. For instance consider the equation

(2) 2" + az’' + bz = sinz.

As with all second order equations one converts to system form by the substitution
(3) T =T, and  zp =2

With this substitution, one arrives at the equations

Z2

H\
I

x

(4)

x'2 = —axo — br; +sinz.

36



Matlab Commands for Differential Equations

Below are two ways to solve the initial value problem:

dy
— = 0) =1.
Solving symbolically:
e y = dsolve(’Dy = y’,’y(0)=1")
e ezplot(y,-4,4)
Solving numerically:
o F = 1inline(’y?,’t?,7y’) «iiiiiiiiiiiiiiaa Makes a function F'(t,y) = y.
O T = = Lt Make a vector of time values.

o [T,Y] = ode45(F,T,1);
° plOt(T,Y)



1. Separation of Variables

e Enter the following sequence of commands:

syms t

f = sqrt(9-t~2)

T o e ) An antiderivative of f.
Int(f, =3, 3) i e The definite integral.
g = t*¥acos(t) ..o acos(t) is arccost
diff(g)

pretty(ans)

diff(g, 2) .o The second derivative of g.
pretty(ans)

Aiff(g, 3) coiiii The third derivative of g.
pretty(ans)

ezplot (£, [-3, 3])
ezplot(g, [-1, 11)
e Remarks.

The graph of £ should be the upper half of a circle. It will be distorted because of
the default scale on the y-axis. Display the graph again and in the Figure window,
click on . Pull down to Axis Properties. Reset the y-limits to be -1.5 and 3.1,
click on and then . The graph should now appear more like a semicircle.

Type help sym/diff or help int in MATLAB for more info on the use of diff

or int.
Following the methodology above, using a separate piece of paper, do the following.

(1) Find the particular solution to the ODE y” = secy’ that is tangent to the t-axis at
the origin. Use the method of separation of variables, and make sure to include all of
the steps. Use MATLAB to compute the appropriate integrals.

(Hint. Let u = 3’ and remember to add a constant of integration where appro-
priate.)

(2) Find the area under the graph of the solution of the IVP in part (a) on the interval
[-1,1]. Make sure to write the formula you use, not just the answer. Again, use
MATLAB to compute the appropriate integrals.

(3) Use MATLAB to plot the solution of the IVP in part (a) on the interval [—1, 1]. Sketch
the graph, by hand. DO not get a printout.

(4) Find the absolute maximum value of the solution on the interval [—1, 1].



2. Direction Fields

e dfield6 is a MATLAB program for MATLAB Version 6 that may be retrieved from the
web site at http://math.rice.edu/~dfield/ and other versions are also available at
this site. If you don’t have it, copy it into C:\Matlab\Work (or C:\MatlabR12\Work).

e In MATLAB, enter the command: dfield6

e A DFIELD Setup window appears.

e The differential equation x’ = x~2 - t appears in the boxes for
The differential equation.

e Using MATLAB notation, change these entries to enter the differential equation
y’ = sin y.

e The independent variable by default is t so leave that entry unchanged.

e For The display window settings,

— enter -5 for The minimum value of t
— enter 5 for The maximum value of t
— enter -2xpi for The minimum value of y
— enter 2xpi for The maximum value of y.

e Click on the Proceed button. The direction field for your differential equation will
appear in another window.

e At the top of this window, you can click on Options and pull down to Window settings.
Here you can select Arrows instead of Lines for your direction field plot.

e If you click at any point in the direction field plot, a solution curve through that point

is plotted. Several solution curves can be plotted by clicking on more than one point.
Following the methodology above, do the following.

(a) Print out or carefully sketch by hand the direction field of the differential equation

2y
t
(Choose — 5 <t < 5and — 10 < y < 10.)

(b)  Superimpose some solutions (say, two above the t-axis and two below the t-axis) on the

direction field in part (a).

(¢) Use the information in parts (a) and (b) to guess a one-parameter family of solutions of

the differential equation.



3. Homogeneous ODEs with Constant Coefficients

Try the following in MATLAB:

syms m

egqnl = 'm”2 - 3*m-1 = 0’

eqn2 = 'm"4 - 4*m”3 + 14*m~2 - 20*m + 25 = 0’
solve (eqnl)

solve (eqn2)

For each of the following differential equations:

e Write down the auxiliary equation.
e Write down, in standard mathematical notation, all of the solutions to the auxiliary
equation. (Use MATLAB to find the solutions.)

e Write down the general solution of the differential equation.
(1) y”, + y” _ 6y, _ ]-8y — 0
(2) y*- 297" - 6y” + 16y’ - 8y = 0
(3) y*-3y” + Ty” + 21y’ - 26y = 0

(4) y5 _ 2y4 + 2y”a _ 4y7a + ya _ 2y =0

(5) 2y5 _ y4 _ 4y757 + 3y7a _ 8y’ _ 12y =0



4. Plotting Solutions to First Order Initial Value Problems

Enter the following sequence of commands:

F = inline(’sin(y)’, ’t’, ’y’) .cooiiiiiiiiia... Defines a function of two variables.
T =0:.01:10; oot Defines a vector. Do not skip the semicolon.
[T, Y] = oded45(F, T, 1);
plot(T, Y)

Remarks

1. If you skip the semicolon, you will get a list of the values in T.

2. The third statement tells MATLAB to numerically solve the IVP:

yl = F(t7 y)a y(O) =1

By using T as the second argument in the call to ode45 we are indicating that we want the
values of Y at the times given in the vector T. If you want more info on the use of ode45, issue

the command help ode45.
3. The fourth statement plots a graph of the points
(T(1), Y (1)), (T(2), Y (2)) ., (T(1000), ¥ (1000)).

It should appear that the solution has a horizontal asymptote. Try extending the range of
the t values to go from 0 to 20. You can re-type the second statement as T = 0:.01:20; or
you can use the up-arrow key until the statement T = 0:.01:10; reappears and then use the
left-arrow key to move the cursor left and change the 10 to 20, then press the Enter key. Next
you can again use the up-arrow key to recall ode45 and then press the Enter key. Plot the
new values. The up-arrow key and the down-arrow key allow the user to move up and down
through the list of previous commands. A command does not get entered until you press the

Enter key.

4. What would you guess for the value of the horizontal asymptote?

Using the methodology described above, sketch by hand, on a separate piece of paper, the

solution of the given initial-value problem on the given interval. DO not get a printout.

Make sure you include appropriate numerical values along the axes.

(1) ¢ == —cost, y(0) =1, [0, 30]
@ Y=o w0=2 3
(3) y;i— y = tcost, y(0) =0, [0, 20]
@) toty=t oyl =2 [L10



(1) Enter the following commands:
(a) y = dsolve(’Dy=-0.1xy’, ’y(0)=1’)
(b) ezplot(y, [-20,20])
(c) Explain exactly what happened.
(2) Repeat the above procedure to solve and plot the solutions for the following differential
equations. Use the same initial condition as above.
(a) y'(t) = sint
(b) y'(t) = —0.1y + sint
(c) Explain exactly what happened in each example.
(3) Compare the differential equations in the three examples. Then compare the graphs
of the solutions in the three examples. What do you observe from these comparisons?
(4) Prepare a brief (less than 1 page) written report answering all the questions and
sketching the graphs carefully by hand. Use complete sentences and standard math-

ematical notation. Do not get a printout.

Students observe that for a linear differential equations qualitative features of solutions tend to

"add” as terms are added to the righthand side.



5. Linear First-order Equations

(1) Enter the following commands:
(a) y = dsolve(’Dy=-0.1%y’, ’y(0)=1’)
(b) ezplot(y, [-20, 20])
(c) Explain exactly what happened.
(2) Repeat the above procedure to solve and plot the solutions for the following differential
equations. Use the same initial condition as above.
(a) y'(t) = sin(t)
(b) y'(t) =-0.1 y + sin(t)
(c) Explain exactly what happened in each example.
(3) Compare the differential equations in the three examples. Then compare the graphs
of the solutions in the three examples. What do you observe from these comparisons?
(4) Prepare a brief (< 1 page) written report answering all the questions and sketching
the graphs carefully by hand. Use complete sentences and standard mathematical

notation. Do not get a printout.

Students observe that for a linear differential equations qualitative features of solutions tend to

“add” as terms are added to the righthand side.



6. Linear Second-order Equations

(1) Enter the following commands:
(a) y = dsolve(’D2y+y=0’, ’y(0)=1’, ’Dy(0)=1’)
(b) ezplot(y, [0,100])
(c) Explain exactly what happened.

(2) Repeat the above procedure to solve and plot the solutions for the following differential
equations. Use the same initial condition as above.
(a) ¥"(t) +y(t) = sint
(b) y"(t) +0.1y' +y(t) =0
(c) ¥"(t) + 0.1y + y(t) = sint
(3) Compare the differential equations in the four examples. Then compare the graphs
of the solutions in the examples. Based on things you have learned in class, explain
the differences between the examples.
(4) Prepare a brief (less than 1 page) written report answering all the questions and
sketching the graphs carefully by hand. Use complete sentences and standard math-

ematical notation. Do not get a printout.

Students explore the interaction of damping, restoring, and forcing effects on the solution.



7. A Spring-Mass System
(1) Type the following commands (at the prompt and then press ):
(a) dsolve(’2%D2y + .5*Dy + 5xy = sin(axt)’, ’y(0)=1’, ’Dy(0)=1’)
(b) y1 = sub(y, @, 1) ieieii e Substitutes “1” for a.
(c) ezplot(yl, [0,501)
(d) Explain exactly what happened.

(2) Repeat (b) and (c) for different values of a, both more and less than 1. By trial
and error find a value of ¢ that maximizes the amplitude of the solution. From the
equation, what is its ‘natural’ or ‘resonant’ frequency? What should happen when a

is set to this value? Test your hypothesis.

(3) Prepare a brief (less than 1 page) written report answering all the questions. Use

complete sentences and standard mathematical notation. Do not get a printout.

The user examines what happens when a system is excited at different frequencies, the relationship

between natural frequency and amplitude of the forced, damped oscillator.



8. Laplace Transforms

9. Linear versus Nonlinear

syms t y

solution?

(e) Explain exactly what happened.
(2) Repeat the above procedure to solve the the following differential equation. Use the
initial conditions: y(0) =1, ¥/(0) = 1.
y"(t) —y(t) + () =0

Why is MATLAB unable to solve this equation symbolically?
(3) Note that the equation in #2 may be written as a system by the substitution y; = y,
y2 = y'. This produces the system:

E_?JQ
dt

(5) n_,
a1

Now try the following:

(a) F = inline(’[y(2);y(1) - y(1)~3]1’,°t’,’y’) ..Makes F the r.h.s. of (1).
(b) T = 0:.01:50; ounrniiiii i Don’t skip the semicolon!
() [T, Y] = ode45(F, T, [2,21);

(d) plot(T, Y(:,1))
Try changing the initial conditions to y(0) = .2, ¥'(0) = .2. How does this effect the
solution? How does this differ from the linear case?

(4) Use the commands you learned in #3 to numerically solve and plot:

y"(t) —y(t) +y°(t) =sint,  y(0)=1, ¢(0)=1

on the interval ¢ = [0,100]. How does the graph of this solution differ from all the
graphs of solutions you have seen for linear equations.
(5) Prepare a brief (less than 1 page) written report answering all the questions. Use

complete sentences and standard mathematical notation. Do not get a printout.

This assignment demonstrates that the solutions of linear equations are very “tame” compared

with solutions of nonlinear equations.



10. Special Functions

The antiderivatives of many elementary functions are not, themselves, elementary functions.
Some of these antiderivatives arise frequently in certain subjects and have been given names.
These are examples of what are called special functions, and other antiderivatives can some-

times be expressed in terms of these special functions.

Try the following MATLAB commands:
syms t
int (exp(-t~2))
int(sin(t~2))

Look up the definition of the special functions involved using the mhelp command which calls

up the help feature in the Maple kernel.

For the following find the general solution on the indicated interval, by hand, using the method

of variation of parameters, except using MATLAB to integrate | and u.

Make sure you show all your work! Look up and write down, in standard mathe-
matical notation, any special functions that occur and any unfamiliar expressions

or constants that appear in these definitions.

1
(a) y' -3y = . t>0

t
(b) y"—2y'+2y:%, t>0



CHAPTER 7
Linear Algebra

MATLAB is short for “Matrix Laboratory” and the original program was designed specifically

to handle matrix operations.

When dealing with matrices in real applications, size and speed are considerations. One
should know that the process of solving equations by Gaussian elimination is a relatively fast
operation, it requires approximately n? operations where n is the size of the matrix. On the
otehr hand, finding the determinant of a matrix in the concentional way requires n! operations,

which is impossible even for fast machines when n is moderately large.

Symbolic computations with matrices are very limited because of inherent limitations such
as the insolvability of quintic equations. So for instance, when MATLAB tries to find the
eigenvalues of a matrix bigger than 4 x 4, it cannot do it symbolically with a determinant, but

numerically with iterative approximations.
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Matlab Commands for Linear Algebra

Making vectors: Unless otherwise specified, variables are row vectors (1 x n arrays). Here

are examples of ways to form vectors. Try them:
e b [1 2 3 4]
eb =Db’
e xx = 0:.1:2

e yy = linspace(0,3,13)
Making matrices:

=[123; 45 6]
= eye(3)

= ones(4)
= zeros(5,3)
rand(2,3)
= randn(5)
= hilb(5)
= pascal(4)

[ ]
D Q T E g Q=
I

e Commands for other speciality matrices include: gallery, hadamard, hankel, invhilb,

magic, rosser, toeplitz , vander, wilkinson.

Basic operations:

e B =A"

o AxC

O CkA e Will not work, Cis 3 by 3 and A is 2 by 3.
e x =P \backslash b .......uiiiuiiiii i e Solves Px=b.
@ P e Checks the previous command.

Some speciality commands

e [m n] = size(A)

e P = pascal(5), p = diag(P)

diag(p)
flipud(A)
f1liplr(A)

v = randn(10,1), a = abs(v)

s = sort(v), m = max(v)

norm(v)



norm(eye (4))

D, N = Null(D), DN
rank (D)

det (D)

trace(D)

inv(G), N*G, Gx*N
cond (H)

Some matrix decompostions:

[L UP] = 1u(®

[V m] = eig(G)
[U T] = shur(G)
[Q R] = qr(@)

[USs V] = svd(G)



1. Matrix Operations

(1) Try the following commands (at the prompt and then press ):
clear
M=1I,3,-1,6;2,4,0,-1;0,-2,3,-1;-1,2,-5,1]
det (M)
inv (M)

(2) Repeat the above procedure for the matrix:

-1 -3 3
2 -1
N = 6
1 4 -1
2 -1 2

(3) Multiply M and N using MxN. Can the order of multiplication be switched? Why or
why not? Try it to see how MATLAB reacts.

(4) Find the determinant and inverse of the following matrix:

1.2969 .8648
2161 1441

(5) Let B be the matrix obtained from A by rounding off to three decimal places. Find
the determinant and inverse of B. How do A~! and B! differ? Explain how this
happened.

(6) Prepare a brief (< 1 page) written report describing what happened and answering
all the questions. Use complete sentences and standard mathematical notation. Do

not get a printout.

This exercise introduces some basic matrix operations, the importance of matrix dimen-

sions, and numerical sensitivity.



2. Solving Linear Systems

(1) Try the following commands (at the prompt and then press ):

(a) A = [1.2969, 0.8648; 0.2161, 0.1441]

(b) bl = [1.2969; 0.2161]

(c) x = A\b1

(d) Repeat the process but with a vector b2 obtained from b1 by rounding off to

three decimal places.
(e) Explain exactly what happened. Why was the first answer so simple? Why do
the two answers differ by so much?
(2) Try the following commands:
(a) B = sym(maple(‘matrix’,2,2’,(I,J)->sin(I*J)’))
(b) ¢ = [1;2]
and use x = B\c to solve Bx = ¢. Then change the 2’s to 3’s in the first line, change
¢ to [1;2;3] and try to solve again. Use x=double(x) to obtain an approximate
numerical value of the solution. Try the command Bn = double(B), then x = Bn\c.
When would an exact symbolic solution and when would an approximate numerical

solution be more useful? For big matrices, which type of computation would be

1 2
C =
and solve Cz = d with d1 = [4;8] and d2 = [1;1]. Use symbolic and non-symbolic

versions of C. Explain the results. Which way gives more information?

faster?

(3) Input the matrix:

(4) Prepare a report as follows:

(a) Using standard mathematical notation, write down the results of all the
computations, except the symbolic solution to the 3 x 3 system in #2. Do not
get a printout.

(b) Using complete sentences, briefly answer all of the questions. This includes

giving explanations where requested.

The matrix in #1 is nearly singular, causing the linear system to be very sensitive to perturbations.
Students are exposed to both symbolic and numerical solutions. The ideas of no solutions or

infinitely many solutions are reinforced.



3. LU Decomposition
4. Least Squares

5. Eigenvalues and Eigenvectors

(1) Try the following commands
(a) digits(4)
(b) A = sym([1,1; 0,1])
(c) E = eig(h)
(d) [V,E] = eig(A)
Find the eigenvalues and eigenvectors for this matrix by hand and interpret the out-

put.

(2) Input the symbolic matrix (use sym as above):

3 -1 -1
B=] -1 0 2
1 1 -3
and try the commands:
(a) SE = @ig(B) «uvuininmi it Finds eigenvalues symbolically.
(b) NE = eig(vpa(B)) ....covvivvinennn... vpa changes from symbolic to numeric.

(c) [SV,SE] = eig(B)
(d) [NV,NE] = eig(vpa(B))
(3) Create a matrix using the command: C = sym(hilb(5)),
and repeat the process in the previous part.
(4) What are your observations about symbolic vs. numerical computations from the last
two parts?
(5) Using complete sentences and standard mathematical notation, write a brief report.

Show your hand calculations and answer all the questions.

In the first example students must consider multiplicities. The last part should lead to a discussion
of the fact that polynomials of degree 5 or higher cannot in general be solved symbolically and
so exact symbolic eigenvalues cannot be found for 5 by 5 matrices. They should also notice that

symbolic solutions are sometimes too complicated to be useful.



6. Eigenvalue Power Method

(1) Enter the following sequence of commands:

format long

A = hilb(5);

m = eig(A)

v = ones(5,1)
w = v./norm(v);

(2) Next enter the the following sequence:
v = A*w;
w = v./norm(v);
ma = w’*A*xw
(3) Repeat the steps in part 2 until the value of ma stops changing.How many iteratations
did it take? Is this number close to one of the eigenvalues? How close?
(4) Repeat the above experiment for the Pascal matrix generated by: A = pascal(5).
(5) Repeat the experiment for a larger matrix.

(6) Using complete sentences and standard mathematical notation, write a brief report.

This demonstrates the simplest form of the QR method. Most modern software including MAT-

LAB'’s built-in function “eig” use improved versions of this algorithm.



7. Eigenvalues by the QR Method

(1) Enter the following sequence of commands:

format long

A = hilb(5)
m = eig(A)
m = flipud(m)

(2) Next enter the the following sequence:
[Q,R] = qr(A);
A = RxQ;
ma = diag(4);
e = norm(m-ma)
(3) Record the value of e. Repeat the steps in the above sequence until the value of e
stops changing. Assume that the errors satisfies e,11 = Ke;, and use the recorded

data to solve for r and K.

(4) Repeat the above experiment for the Pascal matrix generated by: A = pascal(5).
(5) Repeat the experiment for a larger matrix.

(6) How do the computed values of r and K vary in your experiments?

(7) Using complete sentences and standard mathematical notation, write a brief report.

This demonstrates the simplest form of the QR method. Most modern software including MAT-

LAB'’s built-in function “eig” use improved versions of this algorithm.



CHAPTER 8
Programming in Matlab

Commands for Matlab Programming

56



1. Programming in the Command Window



2. Writing and Running an m-file



3. Defining a function in an m-file



4. Determinates of Random Matrices



5. Cobweb graphs for discrete dynamical systems



6. Approximate Double Integrals

(1) Go to the O.U. Matlab website (www.math.ohiou.edu/"matlab). In 263D, under
this assignment, click on: lowerleft.m
This will download a program file; save it to your working directory.

(2) Open Matlab. In the command window, check the current directory, and if needed,
change to the directory where you saved lowerleft.m.

(3) In the command window, type the following commands:

format long

f = inline(Cx*y~2’,’x’,’y’)

lowerleft(f,0,1,0,2,10,20)
Matlab should return the answer 1.1115000000000. Calculate the integral exactly
by hand and find the % error.

(4) Click on the file icon at the upper left corner and open the file lowerleft.m, this will
be the program that was used in the command above by the same name. Read the
program and comments.

(5) Save the program as centerpoint.m. Modify it to do Riemann sums using the
centerpoint rather than the lowerleft point. You will need to change the name of the
function in the first line to centerpoint, otherwise, you will need to change very
little.

(6) Test your new program on f(z,y) = ry? by typing:

centerpoint(£,0,1,0,2,10,20)
This answer should be closer to the right answer than lowerleft Test this using the
% error.

(7) Try out your new program on the following integral:

2 5
/ / Vay+y® + 22 dydx
o Jo

Also try this integral using the command dblquad as in the previous homework. For
m and n fairly large, does your program come close to Matlab’s built in program?

(8) Using complete sentences and standard mathematical notation, write a brief report.

This assignment gives student a chance to work with Riemann sums and gives a very gentle

introduction to programming in Matlab.



CHAPTER 9
Sample Solutions

Some words about sample solutions.
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Sample Solution For: ‘Factoring Expressions and Solving Equations’

The command clear clears all variables.

The command syms x declares z to be a symbolic variable.

The command exprl = (x-1)*(x-2)*(x-3)*(x-4)*(x-5) gives the label expri
to the expression (z — 1)(z — 2)(z — 3)(z — 4)(z — 5).

The command expand is used to expand or multiply out an expression. Expanding
exprl yields

z® — 152 + 852 — 2252% + 274z — 120

The command factor is used to factor an expression. Here we factor the expres-
sion that results from expanding exprl. Thereby, we recover exprl, which is what
one would expect.

Solving expr2 = 0 gives z = 1,2, 3,4, 5.

The relationship between solving and factoring is as follows: Let p(xz) be any
polynomial. z = zg is a solution of p(z) = 0 if and only if (z — z¢) is a factor of p(z).
MATLAB is not able to factor z* + 3z3 + 322 + x + 3.

MATLAB is able to solve z* + 323 + 322 + x 4+ 3 = 0, symbolically; however, the
solutions it gives are extremely long and complicated.

The command double (ans) numerically evaluates ans, in this case the symbolic
solutions to z* 4+ 32% + 322 + = + 3 = 0. (Note. double(ans) does not mean 2 - ans;

double is short for double precision.) The numerical solutions we obtain are
x = 0.2289 £ 0.8595;, —1.7289 £ 0.8959:

One reason an exact, symbolic solution may not be as useful as an approximation
is that when we measure things we usually use decimals or very simple fractions.
Solving expr3-3 gives £ = 0,—1,—1,—1. The reason the answer is so nice is that

expr3 - 3is
et 4323 + 302 4z = (2 + 32 + 3z +1) = z(z + 1)3

MATLAB is unable to factor expr4 or to solve expr4=0, symbolically. MATLAB gives

the numerical solutions (to four decimal places)
z =0.9615, 2.2093, 2.7342, 4.1510, 4.9541

None of the algorithms MATLAB uses to obtain symbolic solutions to polynomial
equations work for this equation, so MATLAB provides an approximate numerical
solution.

It is known from higher mathematics that, for polynomial equations of degree five

or higher, a symbolic solution is not always possible.



(6)

(7)

Sample Solution For: ‘Defining, Evaluating, and Plotting Functions’

The command syms x declares x to be a symbolic variable. The command f = sin(x)
makes f the symbolic function sinz.

The command subs(f, 2) numerically evaluates f(2). The command subs(f, ’2’)
symbolically evaluates f(2). The command double (ans) numerically evaluates ans,
in this case sin2. (Note. double(ans) does not mean 2 - ans; double is short for
double precision.)

The command ezplot (f) plots y = sinz using a default domain interval.

First, we plot y = exp(z) = e” using a default domain interval. Second, we plot
y = exp(z) using the domain interval [—2, 2].

2 using a default domain interval.

This plots y = x
(a) The graph of y = sin(z%) oscillates (goes up and down) quite rapidly for not
too large values of |z|. (For example, between z = 3 and = = 4, the graph of
y = sin(z®) oscillates
45 — 35
2
MATLAB cannot accurately portray the graph of a function that oscillates so

~ 124 times.)

rapidly.

(b) For z not too close to 0,

Vz2 — 00001 ~ Va2 = |z,

and this is what the graph looks like using the default domain interval. However,

if |z| is close enough to 0, then the graph looks different (in fact,
V22 —.00001 is not a real number if 2> < .00001.)

Some distinctive features of the graph are not apparent, because of the scale that
MATLAB chooses.

(c) The value of |27 — z| is relatively large for relatively small |z|. For example,
27 — 2 = 126. Using the default domain it appears as though z” —z = 0 for z in
[—1,1], which, of course, is not the case. As in (b), some distinctive features of
the graph are not apparent, because of the scale that MATLAB chooses.

MATLAB plots function by locating points on the graph and connecting the points. If
ezplot is used, MATLAB will choose a default domain interval if one is not specified.

If the true graph oscillates too rapidly, the computer may not fill in enough points
to give an accurate representation. If the domain is not chosen properly, important
features of the graph may be missed. Often, but not always, problems with plotting

can be alleviated by choosing a different domain interval.



3. Sample Solution for ‘Indefinite Integrals’

(1) (a) The command syms x declares x to be a symbolic variable.
(b) The command int(x~2) is used to find an antiderivative (indefinite integral)
for x?, namely, % x3. Note that MATLAB omits “+C” from the answer.
(c) The command diff(ans) is used to differentiate the previous answer. The
result is x°.
The derivative of an indefinite integral of a function is the original function.

(2) Using the command int we obtain

/(x— D(x +2) -1 + 1) dx
1 1 2 1 1
= (X_l)—%In(x—l)—§In(x+2)+m+zln(x+l)

Note that MATLAB uses log for the natural logarithm which is denoted by In in
most calculus textbooks.
Using the command diff(ans) we obtain
1 1 2 1 1
12(x - 1) 36(x-1)  9(x +2)  4(x + 1) * 4(x + 1)
The command simplify(ans) instructs MATLAB to attempt to simplify the

previous answer. In this case, we obtain

(x - 1)%(x + 2)(x + 1)?

Since x? - 1 = (x + 1)(x - 1), this is easily seen to be equal to the original function.

(3) (a) MATLAB gives a long answer in terms of the (unknown) roots of a fifth degree
polynomial.
(b) MATLAB cannot find an explicit integral.
(¢) MATLAB gives the answer in terms of another indefinite integral which is no
simpler.

The function in #2 is a rational function for which the denominator can easily
be written as the product of linear factors. There are well-known techniques for
integrating such a function.

The function in #3(a) is also a rational function. However, there is no “formula”
for factoring a general fifth degree polynomial into linear and irreducible quadratic
factors. This accounts for the nature of the given solution.

For the functions in #3(b) and (c), none of the algorithms MATLAB uses to obtain
explicit integrals are successful.

It is a fundamental fact that not all elementary functions have an antiderivative

in terms of elementary functions.



CHAPTER 10

Summary of Matlab Commands
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