Lecture 7

Symbolic Computations

The focus of this course is on numerical computations, i.e. calculations, usually approximations, with floating point numbers. However, MATLAB can also do symbolic computations, which means exact calculations using symbols as in Algebra or Calculus.

Note: To do symbolic computations in MATLAB one must have the Symbolic Toolbox.

Defining functions and basic operations

Before doing any symbolic computation, one must declare the variables used to be symbolic:

\[\text{syms } x \ y \]

A function is defined by simply typing the formula:

\[f = \cos(x) + 3*x^2 \]

Note that coefficients must be multiplied using \(\times \). To find specific values, you must use the command \texttt{subs}:

\[\text{subs}(f, \pi) \]

This command stands for substitute, it substitutes \(\pi \) for \(x \) in the formula for \(f \). If we define another function:

\[g = \exp(-y^2) \]

then we can compose the functions:

\[h = \text{compose}(g,f) \]

i.e. \(h(x) = g(f(x)) \). Since \(f \) and \(g \) are functions of different variables, their product must be a function of two variables:

\[k = f*\]

\[\text{subs}(k,[x,y],[0,1]) \]

We can do simple calculus operations, like differentiation:

\[f1 = \text{diff}(f) \]

\[k1x = \text{diff}(k,x) \]

indefinite integrals (antiderivatives):
\[F = \text{int}(f) \]

and definite integrals:
\[\text{int}(f, 0, 2\pi) \]

To change a symbolic answer into a numerical answer, use the `double` command which stands for *double precision*, (not times 2):
\[\text{double}(\text{ans}) \]

Note that some antiderivatives cannot be found in terms of elementary functions; for some of these the antiderivative can be expressed in terms of special functions:
\[G = \text{int}(g) \]

and for others MATLAB does the best it can:
\[\text{int}(h) \]

For definite integrals that cannot be evaluated exactly, MATLAB does nothing and prints a warning:
\[\text{int}(h, 0, 1) \]

We will see later that even functions that don’t have an antiderivative can be integrated numerically. You can change the last answer to a numerical answer using:
\[\text{double}(\text{ans}) \]

Plotting a symbolic function can be done as follows:
\[\text{ezplot}(f) \]

or the domain can be specified:
\[\text{ezplot}(g, -10, 10) \]
\[\text{ezplot}(g, -2, 2) \]

To plot a symbolic function of two variables use:
\[\text{ezsurf}(k) \]

It is important to keep in mind that even though we have defined our variables to be symbolic variables, plotting can only plot a finite set of points. For instance:
\[\text{ezplot}(\cos(x^5)) \]

will produce the plot in Figure 7.1, which is clearly wrong, because it does not plot enough points.
Figure 7.1: Graph of $\cos(x^5)$ produced by the ezplot command. It is wrong because $\cos u$ should oscillate smoothly between -1 and 1. The problem with the plot is that $\cos(x^5)$ oscillates extremely rapidly, and the plot did not consider enough points.

Other useful symbolic operations

MATLAB allows you to do simple algebra. For instance:

\begin{verbatim}
≫ poly = (x - 3)^5
≫ polyex = expand(poly)
≫ polysi = simplify(polyex)
\end{verbatim}

To find the symbolic solutions of an equation, $f(x) = 0$, use:

\begin{verbatim}
≫ solve(f)
≫ solve(g)
≫ solve(polyex)
\end{verbatim}

Another useful property of symbolic functions is that you can substitute numerical vectors for the variables:

\begin{verbatim}
≫ X = 2:0.1:4;
≫ Y = subs(polyex,X);
≫ plot(X,Y)
\end{verbatim}
Exercises

7.1 Starting from mynewton write a well-commented function program mysymnewton that takes as its input a symbolic function \(f \) and the ordinary variables \(x_0 \) and \(n \). Let the program take the symbolic derivative \(f' \). You will need to use the command \texttt{subs} to obtain values of \(f(x) \) and \(f'(x) \). Test it on \(f(x) = x^3 - 4 \) starting with \(x_0 = 2 \). Turn in the program and a brief summary of the results.

7.2 Find a complicated function in an engineering or science textbook or website. Make a well-commented script program that defines a symbolic version of this function and takes its derivative and indefinite integral symbolically (if possible). Plot the function on the domain that is relevant for the application. In the comments of the script describe what the function is and properly reference where you got it. Turn in your script and the plot.
Review of Part I

Methods and Formulas

Solving equations numerically:

\(f(x) = 0 \) — an equation we wish to solve.

\(x^* \) — a true solution.

\(x_0 \) — starting approximation.

\(x_n \) — approximation after \(n \) steps.

\(e_n = x_n - x^* \) — error of \(n \)-th step.

\(r_n = y_n = f(x_n) \) — residual at step \(n \). Often \(|r_n|\) is sufficient.

Newton’s method:

\[x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \]

Bisection method:

\(f(a) \) and \(f(b) \) must have different signs.

\(x = (a + b)/2 \)

Choose \(a = x \) or \(b = x \), depending on signs.

\(x^* \) is always inside \([a, b]\).

\(e < (b - a)/2 \), current maximum error.

Secant method:

\[x_{i+1} = x_i - \frac{x_i - x_{i-1}}{y_i - y_{i-1}} y_i \]

Regula Falsi

- a hybrid between secant and bisection methods.

\[x = b - \frac{b - a}{f(b) - f(a)} f(b) \]

Choose \(a = x \) or \(b = x \), depending on signs.
Convergence:

- Bisection is very slow.
- Newton is very fast.
- Secant methods are intermediate in speed.
- Bisection and Regula Falsi never fail to converge.
- Newton and Secant can fail if x_0 is not close to x^\ast.

Locating roots:

- Use knowledge of the problem to begin with a reasonable domain.
- Systematically search for sign changes of $f(x)$.
- Choose x_0 between sign changes using bisection or secant.

Usage:

- For Newton’s method one must have formulas for $f(x)$ and $f'(x)$.
- Secant methods are better for experiments and simulations.
- Bisection and Regula Falsi are slower, but keep the root within the current bounds.

Matlab

Commands:

```matlab
v = [0 1 2 3] ... Make a row vector.
u = [0; 1; 2; 3] ... Make a column vector.
w = v' ... Transpose: row vector ↔ column vector.
x = linspace(0,1,11) ... Make an evenly spaced vector of length 11.
x = -1:.1:1 ... Make an evenly spaced vector, with increments 0.1.
y = x.^2 ... Square all entries.
plot(x,y) ... plot y vs. x.
f = @(x) 2*x.^2 - 3*x + 1 ... Make an anonymous function.
y = f(x) ... A function can act on a vector.
plot(x,y,'*','red') ... A plot with options.
Control-c ... Stops a computation.
```

Program structures:

```matlab
for i=1:20
    S = S + i;
end
```

```matlab
if ... end example:
```
if y == 0
 disp('An exact solution has been found')
end

while ... end example:

while i <= 20
 S = S + i;
 i = i + 1;
end

if ... else ... end example:

if c*y>0
 a = x;
else
 b = x;
end

Function Programs:

• Begin with the word function.
• There are inputs and outputs.
• The outputs, name of the function and the inputs must appear in the first line.
 i.e. function x = mynewton(f,x0,n)
• The body of the program must assign values to the outputs.
• Internal variables are not visible outside the function.
• A function program may not use variables in the current workspace unless they are inputs.

Script Programs:

• There are no inputs and outputs.
• A script program may use, create, change and even delete variables in the current workspace.

Symbolic:

syms x y
f = 2*x^2 - sqrt(3*x)
subs(f,sym(pi))
double(ans)
g = log(abs(y)) MATLAB uses log for natural logarithm.
h(x) = compose(g,f)
\[k(x,y) = f \ast g \]
\[\text{ezplot}(f) \]
\[\text{ezplot}(g, -10, 10) \]
\[\text{ezsurf}(k) \]
\[f_1 = \text{diff}(f, 'x') \]
\[F = \text{int}(f, 'x') \] \text{indefinite integral (antiderivative)}
\[\text{int}(f, 0, 2\pi) \] \text{definite integral}
\[\text{poly} = x \ast (x - 3) \ast (x-2) \ast (x-1) \ast (x+1) \]
\[\text{polyex} = \text{expand} (\text{poly}) \]
\[\text{polysi} = \text{simple} (\text{polyex}) \]
\[\text{solve}(f) \]
\[\text{solve}(g) \]
\[\text{solve}(\text{polyex}) \]
Part II

Linear Algebra