Lecture 36

Solution Instability for the Explicit Method

As we saw in experiments using `myheat.m` the solution can become unbounded unless the time steps are small. In this lecture we consider why.

Writing the Difference Equations in Matrix Form

If we use the boundary conditions $u(0) = u(L) = 0$ then the explicit method of the previous section has the form

$$u_{i,j+1} = ru_{i-1,j} + (1 - 2r)u_{i,j} + ru_{i+1,j} \quad \text{for} \quad 1 \leq i \leq m - 1 \quad \text{and} \quad 0 \leq j \leq n - 1,$$

where $u_{0,j} = 0$ and $u_{m,j} = 0$. This is equivalent to the matrix equation

$$u_{j+1} = Au_j,$$ \hspace{1cm} (36.1)

where u_j is the column vector $(u_{1,j}, u_{2,j}, \ldots, u_{m,j})'$ representing the state at the jth time step and A is the matrix

$$A = \begin{pmatrix}
1 - 2r & r & 0 & \cdots & 0 \\
r & 1 - 2r & r & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & r \\
0 & \cdots & 0 & r & 1 - 2r \\
\end{pmatrix}.$$ \hspace{1cm} (36.2)

Unfortunately, this matrix can have a property which is very bad in this context. Namely, it can cause exponential growth of error unless r is small. To see how this happens, suppose that U_j is the vector of correct values of u at time step t_j and E_j is the error of the approximation u_j, then

$$u_j = U_j + E_j.$$

From (36.1), the approximation at the next time step will be

$$u_{j+1} = AU_j + AE_j,$$

and if we continue for k steps,

$$u_{j+k} = A^k U_j + A^k E_j.$$

The problem with this is the term $A^k E_j$. This term is exactly what we would do in the power method for finding the eigenvalue of A with the largest absolute value. If the matrix A has eigenvalues with absolute value greater than 1, then this term will grow exponentially. Figure [36.1] shows the largest absolute value of an eigenvalue of A as a function of the parameter r for various sizes of the matrix A. As you can see, for $r > 1/2$ the largest absolute eigenvalue grows rapidly for any m and quickly becomes greater than 1.
Figure 36.1: Maximum absolute eigenvalue as a function of r for the matrix A from the explicit method for the heat equation calculated for matrices A of sizes $m = 2 \ldots 10$. Whenever the maximum absolute eigenvalue is greater than 1 the method is unstable, i.e. errors grow exponentially with each step. When using the explicit method $r < 1/2$ is a safe choice.

Consequences

Recall that $r = ck/h^2$. Since this must be less than 1/2, we have

$$k < \frac{h^2}{2c}.$$

The first consequence is obvious: k must be relatively small. The second is that h cannot be too small. Since h^2 appears in the formula, making h small would force k to be extremely small! A third consequence is that we have a converse of this analysis. Suppose $r < .5$. Then all the eigenvalues will be less than one. Recall that the error terms satisfy

$$u_{j+k} = A^k u_j + A^k E_j.$$

If all the eigenvalues of A are less than 1 in absolute value then $A^k E_j$ grows smaller and smaller as k increases. This is really good. Rather than building up, the effect of any error diminishes as time passes! From this we arrive at the following principle: If the explicit numerical solution for a parabolic equation does not blow up, then errors from previous steps fade away!

Finally, we note that if we have non-zero boundary conditions then instead of equation (36.1) we have

$$u_{j+1} = Au_j + rb_j,$$

(36.3)

where the first and last entries of b_j contain the boundary conditions and all the other entries are zero. In this case the errors behave just as before, if $r > 1/2$ then the errors grow and if $r < 1/2$ the errors fade away.
We can write a function program `myexppmatrix` that produces the matrix A in (36.2), for given inputs m and r. Without using loops we can use the `diag` command to set up the matrix:

```matlab
function A = myexppmatrix(m,r)
    % produces the matrix for the explicit method for a parabolic equation
    % Inputs: m -- the size of the matrix
    % r -- the main parameter, ck/h^2
    % Output: A -- an m by m matrix
    u = (1 -2*r)*ones(m,1);    % make a vector for the main diagonal
    v = r*ones(m-1,1);        % make a vector for the upper and lower diagonals
    A = diag(u) + diag(v,1) + diag(v,-1); % assemble
end
```

Test this using $m = 6$ and $r = .4,.6$. Check the eigenvalues and eigenvectors of the resulting matrices:

```matlab
≫ A = myexppmatrix(6,.6)
≫ [v e] = eig(A)
```

What is the “mode” represented by the eigenvector with the largest absolute eigenvalue? How is that reflected in the unstable solutions?

Exercises

36.1 Let $L = \pi$, $T = 20$, $f(x) = .1 \sin(x)$, $g_1(t) = 0$, $g_2(t) = 0$, $c = .5$, and $m = 20$, as used in the program `myheat.m`. What value of n corresponds to $r = 1/2$? Try different n in `myheat.m` to find precisely when the method works and when it fails. Is $r = 1/2$ the boundary between failure and success? Hand in a plot of the last success and the first failure. Include the values of n and r in each.

36.2 Write a well-commented MATLAB script program that produces the graph in Figure 36.1 for $m = 4$. Your program should:
- define r values from 0 to 1,
- for each r
 - create the matrix A by calling `myexppmatrix`,
 - calculate the eigenvalues of A,
 - find the max of the absolute values, and
- plot these numbers versus r.