
Lecture 26

Double Integrals for Non-rectangles

In the previous lecture we considered only integrals over rectangular regions. In practice, regions of interest
are rarely rectangles and so in this lecture we consider two strategies for evaluating integrals over other
regions.

Calculus tells us that if the region can be described by simple functions, then we might be able to use iterated
integrals. For instance, suppose that R is the region inside of a circle of radius 2. Since the boundary of that
circle is given by x2 + y2 = 22, we could express the integral of f(x, y) on this region by:∫ 2
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Of course this integral may be complicated, even if f(x, y) is simple. If f(x, y) = x2y2, then
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Unfortunately, we are stuck. None of the tricks of integration work for this integral to give us an elementary
function as an answer. This is often the case and that is one reason why it is necessary to know how to use
numerical integration.

Redefining the function

One strategy is to redefine the function so that it is zero outside the region of interest, then integrate over
a rectangle that includes the region.

For example, suppose we need to approximate the value of

I =

∫∫
T

sin3(xy) dx dy

where T is the triangle with corners at (0, 0), (1, 0) and (0, 2). Then we could let R be the rectangle
[0, 1] × [0, 2] which contains the triangle T . Notice that the hypotenuse of the triangle has the equation
2x+ y = 2. Then make f(x) = sin3(xy) if 2x+ y ≤ 2 and f(x) = 0 if 2x+ y > 2. In Matlab we can make
this function with the command

≫ f = @(x,y) sin(x.*y).^3.*(2*x + y <= 2)
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In this command <= is a logical command. The term in parentheses is then a logical statement and is given
the value 1 if the statement is true and 0 if it is false. We can then integrate the modified f on [0, 1]× [0, 2]
using the command

≫ I = integral2(f,0,1,0,2)

As another example, suppose we need to integrate the function f(x, y) = 10+ (x− 1)(y− 2) inside the circle
of radius 2 centered at (1, 2). The equation for this circle is (x− 1)2 + (y − 2)2 = 4. Note that the inside of
the circle is (x− 1)2 + (y − 2)2 ≤ 4 and that the circle is contained in the rectangle [−1, 3]× [0, 4]. Thus we
can create the right function, plot it, and integrate it by

≫ f = @(x,y) (10+(x -1).*(y -2)).*((x -1).^2 + (y -2).^2 <= 4)

≫ [X Y] = meshgrid ( -4:0.01:4 , -3:0.01:5);

≫ Z = f(X,Y);

≫ mesh(X,Y,Z)

≫ I = integral2(f,-1,3,0,4)

Integration Based on Triangles

The second approach to integrating over non-rectangular regions is based on subdividing the region into
triangles. Such a subdivision is called a triangulation. On regions where the boundary consists of line
segments, this can be done exactly. Even on regions where the boundary contains curves, this can be done
approximately. This is a very important idea for several reasons, the most important of which is that the
finite elements method is based on it. Another reason this is important is that often the values of f are
not given by a formula, but from data. For example, suppose you are surveying on a construction site and
you want to know how much fill will be needed to bring the level up to the plan. You would proceed by
taking elevations at numerous points across the site. However, if the site is irregularly shaped or if there are
obstacles on the site, then you cannot make these measurements on an exact rectangular grid. In this case,
you can use triangles by connecting your points with triangles. Many software packages will even choose the
triangles for you (Matlab will do it using the command delaunay).

The basic idea of integrals based on triangles is exactly the same as that for rectangles; the integral is
approximated by a sum where each term is a value times an area

I ≈
n∑

i=1

f(x∗
i )Ai ,

where n is the number of triangles, Ai is the area of the triangle and x∗ a point in the triangle. However,
rather than considering the value of f at just one point people often consider an average of values at several
points. The most convenient of these is of course the corner points. We can represent this sum by

Tn =

n∑
i=1

f̄iAi ,

where f̄ is the average of f at the corners.

If the triangle has vertices (x1, y1), (x2, y2) and (x3, y3), the formula for area is

A =
1

2
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The function mythreecorners.m below implements this method.

function I = mythreecorners(f,V,T)

% Integrates a function based on a triangulation , using three corners

% Inputs: f -- the function to integrate

% V -- the vertices.

% Each row has the x and y coordinates of a vertex

% T -- the triangulation.

% Each row gives the indices of the three corners

% Output: the approximate integral

x = V(: ,1); % extract x and y coordinates of all nodes

y = V(: ,2);

I=0; % start accumulator at 0

p = size(T,1); % get number of triangles

for i = 1:p % loop through the triangles

x1 = x(T(i,1)); % find coordinates of the three corners

x2 = x(T(i,2));

x3 = x(T(i,3));

y1 = y(T(i,1));

y2 = y(T(i,2));

y3 = y(T(i,3));

A = .5*abs(det([x1, x2, x3; y1, y2, y3; 1, 1, 1])); %find area

z1 = f(x1,y1); % find values at the three corners

z2 = f(x2,y2);

z3 = f(x3,y3);

zavg = (z1 + z2 + z3)/3; % average the values

I = I + zavg*A; % accumulate integral

end

end

Another idea would be to use the center point (centroid) of each triangle. If the triangle has vertices (x1, y1),
(x2, y2) and (x3, y3), then the centroid is given by the simple formulas

x̄ =
x1 + x2 + x3

3
and ȳ =

y1 + y2 + y3
3

. (26.2)

Exercises

26.1 a. Download the program mywasher.m. Plot f(x, y) = x+y
x2+y2 on the region produced by mywasher.m

and use the program mythreecorners.m to calculate the integral of f on the washer. Is this
accurate? How do you know?

b. Download the program mywedge.m. Plot g(x, y) = sin(x) +
√
y on the region produced by

mywedge.m use mythreecorners.m to calculate the integral of g on this wedge.

26.2 Modify the program mythreecorners.m to a new program mycenters.m that does the centerpoint
method for triangles. Run the program on the region produced by mywasher.m with the function
f(x, y) = x+y

x2+y2 and on the region produced by mywedge.m with the function g(x, y) = sin(x) +
√
y.
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