Lecture 18

Iterative solution of linear systems*

Newton refinement

Conjugate gradient method
Review of Part II

Methods and Formulas

Basic Matrix Theory:

Identity matrix: \(AI = A, IA = A, \) and \(Iv = v \)
Inverse matrix: \(AA^{-1} = I \) and \(A^{-1}A = I \)
Norm of a matrix: \(\|A\| \equiv \max_{\|v\|=1} \|Av\| \)
A matrix may be singular or nonsingular. See Lecture 10.

Solving Process:

Gaussian Elimination produces LU decomposition
Row Pivoting
Back Substitution

Condition number:

\[
\text{cond}(A) \equiv \max \left(\frac{\|\delta x\|}{\|x\|} \right) = \max \left(\frac{\text{Relative error of output}}{\text{Relative error of inputs}} \right).
\]
A big condition number is bad; in engineering it usually results from poor design.

LU factorization:

\[
PA = LU.
\]
Solving steps:
Multiply by P: \(d = Pb \)
Forwardsolve: \(Ly = d \)
Backsolve: \(Ux = y \)

Eigenvalues and eigenvectors:

A nonzero vector \(v \) is an eigenvector and a number \(\lambda \) is its eigenvalue if

\[
Av = \lambda v.
\]
Characteristic equation: \(\det(A - \lambda I) = 0 \)
Equation of the eigenvector: \((A - \lambda I)v = 0\)
Residual for an approximate eigenvector-eigenvalue pair: \(r = \|Av - \lambda v\| \)

Complex eigenvalues:

Occur in conjugate pairs: \(\lambda_{1,2} = \alpha \pm i\beta \)
and eigenvectors must also come in conjugate pairs: \(w = u \pm iv \).

Vibrational modes:

Eigenvalues are frequencies squared. Eigenvectors represent modes.

Power Method:

- Repeatedly multiply \(x \) by \(A \) and divide by the element with the largest absolute value.
- The element of largest absolute value converges to largest absolute eigenvalue.
- The vector converges to the corresponding eigenvector.
- Convergence assured for a real symmetric matrix, but not for an arbitrary matrix, which may not have real eigenvalues at all.

Inverse Power Method:

- Apply power method to \(A^{-1} \).
- Use solving rather than the inverse.
- If \(\lambda \) is an eigenvalue of \(A \) then \(1/\lambda \) is an eigenvalue for \(A^{-1} \).
- The eigenvectors for \(A \) and \(A^{-1} \) are the same.

Symmetric and Positive definite:

- Symmetric: \(A = A' \).
- If \(A \) is symmetric its eigenvalues are real.
- Positive definite: \(Ax \cdot x > 0 \).
- If \(A \) is positive definite, then its eigenvalues are positive.

QR method:

- Transform \(A \) into \(H \) the Hessian form of \(A \).
- Decompose \(H \) in \(QR \).
- Multiply \(Q \) and \(R \) together in reverse order to form a new \(H \).
- Repeat
- The diagonal of \(H \) will converge to the eigenvalues of \(A \).
Matlab

Matrix arithmetic:

\[A = \begin{bmatrix} 1 & 3 & -2 & 5 \\ -1 & -1 & 5 & 4 \\ 0 & 1 & -9 & 0 \end{bmatrix} \] Manually enter a matrix.
\[u = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}' \]
\[A*u \]
\[B = \begin{bmatrix} 3 & 2 & 1 \\ 7 & 6 & 5 \\ 4 & 3 & 2 \end{bmatrix} \] multiply \(B \) times \(A \).
\[2*A \] multiply a matrix by a scalar.
\[A + A \] add matrices.
\[A + 3 \] add 3 to every entry of a matrix.
\[B.*B \] component-wise multiplication.
\[B.^3 \] component-wise exponentiation.

Special matrices:

\[I = \text{eye}(3) \] identity matrix
\[D = \text{ones}(5,5) \]
\[0 = \text{zeros}(10,10) \]
\[C = \text{rand}(5,5) \] random matrix with uniform distribution in \([0,1]\).
\[C = \text{randn}(5,5) \] random matrix with normal distribution.
\[\text{hilb}(6) \]
\[\text{pascal}(5) \]

General matrix commands:

\[\text{size}(C) \] gives the dimensions \((m \times n)\) of \(A \).
\[\text{norm}(C) \] gives the norm of the matrix.
\[\text{det}(C) \] the determinant of the matrix.
\[\text{max}(C) \] the maximum of each row.
\[\text{min}(C) \] the minimum in each row.
\[\text{sum}(C) \] sums each row.
\[\text{mean}(C) \] the average of each row.
\[\text{diag}(C) \] just the diagonal elements.
\[\text{inv}(C) \] inverse of the matrix.
\[C' \] transpose of the matrix.

Matrix decompositions:

\[[L \ U \ P] = \text{lu}(C) \]
\[[Q \ R] = \text{qr}(C) \]
\[H = \text{hess}(C) \] transform into a Hessian tri-diagonal matrix, which has the same eigenvalues as \(A \).
Part III
Functions and Data