MATLAB Survival Guide
Toby Driscoll, January 7, 1998

MATLABIS...

A fancy calculator. You can use MATLAB just like a calculator: Type in a command for some operations
to be performed on some data, and MATLAB comes back with the answer. That isto say, MATLAB is
an interpreted environment. Of course, you get a calculator that does advanced linear algebra, special
functions, etc.

A graphicspackage. MATLAB hasagreat deal of power for creating 2-D and 3-D graphs. A wide variety
of prepackaged graph types are provided. Moreover, everything that is rendered is an object within a
class hierarchy, and you can modify any of these objects’ properties. MATLAB aso includesafull set
of user interface widgets, so you can create or use graphical interfaces to packages.

A programming language. You can write functions of MATLAB statements just as with any computer
language. The MATLAB language has some useful features, such as natural mathematical syntax,
strong support of matrices, advanced data types, and automatic dynamic memory allocation. The
programs that you write are executable on any platform running MATLAB.

A numerical laboratory. MATLAB isacontraction of “matrix laboratory,” which reflects a certain attitude.
In MATLAB it's easy to formulate ahypothesis, conduct experiments, examine results, and refineideas
in afeedback loop—in short, to practice experimental mathematics. The emphasisis on efficiency of
algorithmic development and mathematical understanding.

MATLAB isn't...

A maximum-performancetool. If you must get the very most out of your machine, MATLAB probably
isn't the way to go. Finely tuned numerical libraries for low-level programming are likely to be
superior. That isn't to say that MATLAB isuselessfor practical problems. An occasional compromise
istolink in C or Fortran routinesto a MATLAB function.

A symbolic manipulator. Unlike Maple, Mathematica, and other symbolic mathematics packages, MAT-
LAB doesn’t do abstract mathematical transformations. Every variable must always have a concrete
value, and all calculations are performed in afixed precision.

Getting help

The best way to get started is to read the user’s guide that comes with MATLAB, if it is available to you.
Otherwise, there are many books that have MATLAB instruction as a primary or secondary goal. Visit
htt p: // ww. mat hwor ks. comfor acurrent list.

Much help is available online. The most extensive is through the command hel pdesk, which pointsa
web browser to the top of alarge, searchable documentation tree. For specific help on using built-in features
and functions, you can use hel p or the more convenient hel pwi n. Most useful for beginners are

>> hel pwi n gener al
>> hel pwi n | ang
>> hel pwi n ops

If you need to find a command related to some keyword, | ookf or may help. For instance,

>> | ookfor menory

CLEAR d ear variables and functions from nenory.
| NVEM Li st functions in nenory.

MEMORY Help for nmenory linmitations.

PACK Consol i date wor kspace nenory.

MWIEIN Initialize novie frame nenory.

Running the built-in deno will give you ideas about what's available.

You will start by knowing how to do just afew things. Asyou get more comfortable, you will seek out
shortcuts or additional capabilitiesthat you “know” must be there. The best way to learn MATLAB isto dig
in and start using it!

Simpleuse
If you typeinavalid expression and press Enter, MATLAB will immediately execute it and return the result.

>> 242
ans =
4

>> sin(pi/2)
ans =
1

>> 1/0
Warni ng: Divide by zero.
ans =

I nf

>> exp(i*pi)
ans =
-1. 0000 + 0.0000i

The >> symbol is the prompt, and when you seeit, MATLAB iswaiting for you to enter something. Notice
that expressionsinvolving the imaginary uniti (or j) return complex results.
You can assign valuesto variables.

>> x = sqrt(3)
X =
1.7321

>> at an(x)

ans =
1.0472
>> pi/ans
ans =
3

When an expression returns a single result that is not assigned to a variable, this result is assigned to the
variable ans, which can then be used like any other variable.
Here are afew other demonstration statements.

>> % This is a coment.

>> x = rand(100, 100); %don’t print out X
>> s = "Hello wrld; %a string variable
>t =1+ 2 + 3 + ...
4 +5+ 6 % continuation of a line
t =

21
Matrices

Matrices are the heart and soul of MATLAB. Fundamentally, MATLAB sees (almost) everything as amatrix,
with vectors, scalars, and even strings as special cases.
Constructing matrices

The simplest way to construct a matrix is by enclosing its entries in square brackets.

> A=1[123;456;7 8 9]

A =
1 2 3
4 5 6
7 8 9

>> b =[0;1;0]

0
1
0

Separate columns by spaces (or commas) and rows by semicolons (or new lines). A matrix which has just
one column is a column vector. You can also create a row vector. Sometimes, the two types of vectors are
interchangeable, but often they are not, so take care.

Brackets can be nested, so long as the result makes sense.

>>B=1[[12;34] [5;6]]
B =

1 2 5

3 4 6

You may occasionally need the empty matrix, which isinput as[] . Bracket constructions are suitable only
for very small matrices. For larger ones, there are many useful functions, as shown in Table 1.

Table 1: Commandsfor building matrices.

eye identity matrix
zeros al zeros

ones all ones

di ag diagonal matrix
triu upper triangle

tril lower triangle
rand,randn random entries

I i nspace evenly spaced entries

An especially important construct is the colon operator.

>> 1:8
ans =

1 2 3 4 5 6 7 8
>> 0:2:10
ans =

0 2 4 6 8 10
>> 1:-.5:-1
ans =

1. 0000 0. 5000 0 -0. 5000 -1. 0000

An array is subtly different than a matrix. Both are collections of related numbers, but a matrix is
given a special mathematical interpretation. Arraysin MATLAB can have any number of dimensions, while
matrices have two. Formally, there is no way to distinguish a matrix from a 2-D array in MATLAB. In fact,
the term “matrix” is often used in either case. Confusing the two typesin practice, however, isliableto lead
to disaster.

Accessing elements

Table 2 lists several useful commands for obtaining information about a matrix or array.
It isfrequently necessary to access one or some of the elements of amatrix. Using the definitions above,
we have

>> A(2,3)
ans =

Table 2: Matrix information commands.
si ze sizein each dimension

I engt h size of longest dimension (esp. for vectors)
ndi ns number of dimensions

find indices of nonzero elements
6
>> b(2) %b is a vector
ans =
1
>> b([1 3]) % multiple el ements
ans =
0
0

>> A(1:2,2:3) %a submatrix
ans =

2 3

5 6

>> B(1, 2: end)

ans =

2 5
>> B(:, 3)
ans =

5

6

Each subscript can be a scalar or a vector (possibly constructed using the colon operator), and the result is
asubmatrix. The first element in each dimension is alwaysindexed as 1. The specia keyword end stands
for the last possible element in a dimension, and the colon by itself means “everything in that dimension.”

Vectors can be given asingle subscript. In fact, any array can be accessed via a single subscript. Multi-
dimensional arrays are actually stored linearly in memory, varying over thefirst dimension, then the second,
and so on. (Think of the columnsof amatrix being stacked on top of each other.) Thusthearray isequivalent
to avector. A single subscript will be interpreted as an index into this vector. Thus A(6) is our example
would return 8. (See sub2i nd and i nd2sub for more details.) A matrix A can be explicitly converted
into column vector form by A(:) .

Subscript referencing can be on either side of assignments.

>> B(1,:) = -A(1,:)
B =

-1 -2 -3
3 4 6
>> C = rand(2, 5)
C =
0.8125 0. 4054 0.
0.2176 0. 5699 0.
>> C(:,4) =] % del et e
C =
0.8125 0. 4054 0.
0.2176 0. 5699 0.
>> (C(2,:) =0 % expand
C =
0.8125 0. 4054 0.
0 0
>> (C(3,1) =3 % create
C =
0.8125 0. 4054 0.
0 0
3. 0000 0

4909 0. 5909 0. 5943
1294 0. 8985 0. 3020
el enent s
4909 0. 5943
1294 0. 3020
the scalar into the submatri x
4909 0.5943
0 0

a new row to make space

4909 0. 5943
0 0
0 0

Observe that a matrix can be resized automatically if you delete elements or make assignments outside the
current size. This can be highly convenient, but it can also cause subtle mistakes.

A different kind of indexing islogical indexing. Logical indices usually arise from arelational operator
(see Table 3). Theresult of applying arelational operator isalogical matrix, which isessentially amatrix of

Table 3: Relational operators.

equal
< lessthan

<=

less than or equal

"= not equal
> greater than
>= greater than or equal

zeros and ones. Using alogical matrix as an index to another matrix returns those values where the logical
matrix has aone. Here we are using the single-subscript interpretation of the matrix.

>> B>0
ans =
0 0 0
1 1 1
>> B(ans)
ans =
3
4
6
>> pb(b==0)

ans =
0
0

>> A(A =round(A))

ans =

[]

>> b([1 1 1])

ans =
0
0
0

>> b(logical ([1 1 1]))

ans =
0
1
0

% first el enent, three copies

% every el enent

Notice that when you use a single subscript on a matrix, you lose the shape information about that matrix,
because the result is a submatrix of a column vector.

Matrix operations

The arithmetic operators +, -, *,
“expanded” to match a matrix.

>> A+A
ans =
2
8
14
>> ans-1
ans =
1
7
13
>> 3*B
ans =
-3
9
>> A*b
ans =

4
10
16

w

12

6
12
18

11
17

18

are interpreted in a matrix sense. When appropriate, scalars can be

2
5
8

>> B*A

ans =
-30 - 36 -42
61 74 87

>> A*B
??? Error using ==> *
I nner matrix di mensions nust agree.

>> A2

ans =
30 36 42
66 81 96
102 126 150

The apostrophe’ produces the conjugate transpose of a matrix.

>> A*B - (B*A')’

ans =
0 0
0 0
0 0

>> b’ *b

ans =
1

>> b*p’

ans =
0 0 0
0 1 0
0 0 0

A special operator, \ (backslash), is used to solve linear systems of equations. A forward slash has asimilar
interpretation.

>> C

>> X

X =
-0.1364
0. 3182
0. 8182

[13-1;240;60 1];
Qb

> C'x - b
ans =
1.0e-15 *
0.1110
0
0

This example brings up an important point about floating-point arithmetic. Since most real numbers cannot
be represented exactly, you should not expect “equal” values to have a difference of exactly zero. The
built-in number eps tells you the smallest significant number relative to unity on your particular machine.

>> nor n(ans)
ans =
1.1102e-16

>> eps
ans =
2.2204e-16

You should never do a comparison like a==b to detect equality of floating-point humbers; instead use
something likeabs(a-b) < eps*nax(a,b).
Some familiar functions from linear algebra are listed in Table 4; there are many others.

Table 4: Functions from linear algebra.
rank rank

det determinant

nor m norm (2-norm, by default)
expm matrix exponential

ei g eigenvalue decomposition
svd singular value decomposition
chol Cholesky factorization

lu LU decomposition

Array operations

Conceptually, array operations simply act identically on each element of an array(s). We have aready
seen some array operations, namely + and - . But *,” ,” ,/ have particular matrix interpretations. To get a
componentwise behavior, precede the operator with a dot.

>> A

A =
1 2 3
4 5 6
7 8 9

>> C

C =
1 3 -1
2 4 0
6 0 1
>> A *C
ans =
1 6 -3
8 20 0
42 0 9
>> b./b

Warni ng: Divide by zero.
ans =
NaN
1
NaN

>> (B+i)’

ans =
-1.0000 - 1.0000i
-2.0000 - 1.0000i
-3.0000 - 1.0000i

. 0000 - 1.0000i
. 0000 - 1.0000i
. 0000 - 1.0000i

w

[EY
IS
[EY

»

>> (B+i).'’

ans =
-1.0000 + 1.0000i 3. 0000 + 1.0000i
-2.0000 + 1.0000i 4.0000 + 1.0000i
-3.0000 + 1.0000i 6. 0000 + 1. 0000i

Observe that 0/ 0 is undefined and returns NaN, which stands for Not A Number. There is no difference
between’ and.’ for real arrays.
Most elementary functions, such assi n, exp, etc., act componentwise.

>> B
B =
-1 -2 -3
3 4 6
>> abs(B)
ans =
1 2 3
3 4 6

10

>> cos(pi *B)

ans =
-1 1 -1
-1 1 1
>> exp(A)
ans =
1. 0e+03 *
0. 0027 0. 0074 0. 0201
0. 0546 0. 1484 0. 4034
1. 0966 2.9810 8.1031
>> expn(A)
ans =
1. Oe+06 *
1.1189 1.3748 1. 6307
2.5339 3.1134 3. 6929

3. 9489 4.8520 5. 7552

Remember that exp and sqrt are quite different from expmand sqr t m Be sure you use the right one!
Other array operations work in parallel along one dimension of the array, returning aresult that is one
dimension smaller.

>> C
C =
1 3 -1
2 4 0
6 0 1
>> sum(O
ans =
9 7 0
>> sum(C, 1)
ans =
9 7 0
>> sum(C, 2)
ans =
3
6
7

Other functions that behave this way include

max sum mean any
mn diff nedian all
sort prod std

11

Flow control

Flow control statements include branching and looping structures. These work much asin other languages.

if
Hereis an exampleillustrating most of the featuresof i f .
if isinf(x) | "isreal(x)
di sp(’ Bad input!’)
y = NaN

elseif (x == round(x)) & (x > 0)
y = prod(1:x-1)

el se
y = gamma(Xx)

end

Conditionsfori f statementsmay involve therelational operatorsof Table3 or functionssuch asi si nf
that return logical values. Numerical values can also be used, with nonzero meaning true, buti f x™ =0 is
better practicethani f x. Individual conditions can be combined using

& (logical AND) | (logical OR) "~ (logical NOT)

Compound conditions can be “ short-circuited”” 1f, while evaluating the condition from left to right, it can be
concluded at some point that the whole expression must be false, evaluation of the condition is halted. This
makes it convenient to write thingslike

if (length(x) >= 3) & (x(3)==1)

that are otherwise awkward.

switch

swi t ch statements technically provide no new functionality, but they are an aternative to i f structures
with many el sei f clauses. For example:

swi tch answer (1)
case {"y',’Y}
di sp(’ OK, formatting hard drive.")
% Put format command here
case {'n","N}
di sp(’ Chi cken!)
case 'Q
return
ot herwi se
disp('Invalid entry, you get one nore try.")
end

Theswi t ch lineis given ascalar or string to work with. This value is compared with the options at each
case, executing the block if a match is found. The optional ot her wi se block if no match isfound. At
most one block is executed, unlike the situation in C.

12

for
Thisillustrates the most common type of f or loop:

f=[11];
for n = 3:100
f(n) =f(n-1) + f(n-2);
end
di sp(f(100))

Of course, you can have as many statements as you like in the body of the loop. The value of the index n
will change from 3 to 100, with an execution of the body after each assignment.

Remember that 3: 100 isreally just arow vector. You can use any row vector in af or loop, not just
one created by a colon. One handy use of thisiswith f i nd, asin

for j = find(Tisnan(x(:))")
% Qperate on x(j), which will never be NaN
end

But be sureit’s arow vector.

Don't usef or loops more than you really have to! In Fortran, you need a loop to do anything with an
array. But MATLAB provides you with most of the array and matrix operations you ever need. Not only isit
more aesthetic to write A* B than atriply nested loop, but f or loops can slow down MATLAB tremendously.

A final warning: If you are using complex numbers, avoid usingi astheloop index. At startup, i isthe
imaginary unit, but you can freely reassign it.

while

while (b-a) > tol
m = nean([a b]);
if f(a)*f(m <O

b =m
el se
a=m
end
end

zero = mean([a b]);

The condition is checked before each execution of the body, so it is possible to never execute the body of
the loop.

break

You can exit a loop prematurely. If br eak is encountered inside af or or whi | e loop, execution is
rerouted to the next statement beyond the end. Only the innermost loop is exited.

Sometimesit'sjust easiest to write aloop with abr eak, even though you could technically do without.
But useit sparingly.

13

M—files: Functionsand scripts

An M-fileisaregular text file containing MATLAB commands, saved with the filename extension. m There
are two types, scripts and functions. The only syntactic difference is that functions begin with a function
header, whereas scripts don’t. But there are important practical differences:

Script Function
no header function [a,b,...] = foo(x,y,...)
base workspace local workspace
interpreted compiled (faster)
one per file many in onefile

no analysistools debugging & profiling available

Use a function whenever you want a module that performs a task multiple times on many different inputs.
Scripts are often used as “ drivers’ that describe only the top level of atask.

On PC and Macintosh platforms, MATLAB has its own small but capable text editor for creating and
editing M—files. You can start it graphically from the command window, or by the command edi t . For
Unix users, thereisagood mat | ab- node. el for Emacs maintained by Matt Wette.

Once an M—file has been saved to disk, it isinvoked by entering the file's root name at the prompt. For
example, if you saved ascript asmydr i ver . m then entering nydr i ver would cause the contents to be
executed. Thereisacatch, however—the file must be in adirectory (folder) on MATLAB's path. The pathis
simply alist of directoriesin which MATLAB looks whenever an unfamiliar command name is encountered.
You can modify it using pat h or edi t pat h.

Scripts

A script is simply a collection of valid MATLAB commands. When the script is invoked by typing its name
at the prompt, the commands are read from the file one at atime and executed just asif they had been typed.

The usefulness of scriptsisin gathering a set of commands that you might use multiple times, perhaps
with small changes. They also let you recreate your work at alater date. Some people use MATLAB with an
editor window open full-time; they enter al their commandsinto a script and periodically execute the script.

Functions

The biggest conceptual difference between a script and a function is in the variable workspace, the list of
variables of which the function is aware. Commands entered at the prompt and in scripts all use the base
wor kspace, which you can view using who. A function executes within alocal workspace whichis created
just for it and which vanishes when the function terminates. The only variables a function knows about
at its beginning are those given as input arguments, and the only variables that can pass out are its output
arguments. These are named in the header, which must be thefirst line of the M—file:

function [outl,out2,...] = func(inl,in2,...)

Outputs are on the left, inputs on the right. They can have any names and you can have as many as you
want. Except for the keyword f unct i on, thisisjust how you will invoke the function from the prompt, a
script, or another function. (Of course, you will have to provide valid values for the input arguments.)

Here is arecursive sorting function.

14

function list = mergesort(list)
if length(list)==
return % do nothing and quit
el se
n = floor(length(list)/2);
1 = mergesort(list(1l:n));
|2 = mergesort(list(n+l:end));
list = nerge(l1,12);
end

You will have to supply the function mer ge yourself!
MATLAB has some very useful tools for debugging functions and tracking their efficiency. Try the help
for debug andprofil e.

Graphics

Thevariety and power of graphicsavailablein MATLAB istremendous—asof thiswriting, thereisaseparate
manual for graphics that ships with the software. Here we only attempt to show the most basic capabilities
for 2-D graphics.

>t = (0:.05:3)";

>> plot(t,sin(pi*t)) % basi c pl ot

>> plot(t,t.”2,'r--") % use a dashed red line

>> plot(t, bessel (0:3,t)) % one curve for each col umm
>> hold on % add to current plot

>> plot(t, bessely(0,t), ko)

>> figure % new figure

>> sem | ogy(t, besseli(0:3,t),"’s-") %log scale iny
>> | oglog(t,4*t. 2+1./t."2) % both | og scal es

If you want multiple “windows” within afigure, try subpl ot . To set the limits of the axes manualy,
useaxi s. Tolabel titleand axes, useti t | e, x| abel ,andyl abel . Also, t ext and gt ext alow you
to annotate with text anywhere. Thereisal egend command for graphs with multiple curves.

Every single object that is rendered has intrinsic properties that can be modified. You can do this by
point-and-click if you start gui de. See the manuals for what is going on.

Keep in mind that your screen is probably color and your printer probably isn’t. To distinguish curves,
create them with different linestyles and markers. See the help for pl ot and the examples above.

Thepri nt command can be used to print figures as hardcopy or as Postscript files. You can also print
afigure using its window menu.

To get started on 3-D graphs, try sur f , mesh, and cont our .

I nput and output

When MATLAB printsnumerical values, it usesa certain format that you control withf or mat . For instance,

15

>> format short % the default
>> i
ans =

3.1416

>> format |ong

>> exp(1)

ans =
2.71828182845905

>> format short e
>> exp(20+i)
ans =
2.6214e+08 + 4.0825e+08i

For no-fuss display of matrices and strings, use di sp. For trickier output use sprintf orfprintf,
which work much like their C counterparts.

>> fprintf (" 93 %42.49\n" ,[1:6; exp((1l:6).72)])
2.718
54. 6
8103
8. 886e+06
7.2e+10
6 4.311e+15

a b wNPE

To prompt the user for simple input, usei nput .
You can save matrices for later use by saying

>> save nyfile ABC

Thevariablesnamed aresaved inafilenyf i | e. mat . (usewhatever nameyou like.) If you don’t name any
variables, the entire base workspace is saved. You can load the variables back in later vial oad nyfil e.
You can also usel oad to load in simple text files of numbers. More sophisticated file input and output can
be done with the C-likef pri nt f andf scanf .

To save the input and output in the command window during a session, use

>> diary | og.txt
>> % Here go sone conmmands and results.
>> diary off

Everything between thedi ar y commandsissaved inl| og. t xt , whether typed by you or output by M AT-
LAB.

As mentioned above, you can obtain hardcopy of your figures with pri nt . You can also save them to
afilewithprint :
>> print -dnfile nyfig

This creates myf i g. m(and possibly nyfi g. mat). By entering nyfi g as a command, you get a new
figure that is areplica of the saved one.

16

