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For what value(s) of α, β, γ does the equality

sin(x + y + z) = sin(x)
sin(y + β − α)

sin(β − α)

sin(z + γ − α)

sin(γ − α)

+
sin(x + α − β)

sin(α − β)
sin(y)

sin(z + γ − β)

sin(γ − β)
(1)

+
sin(x + α − γ)

sin(α − γ)

sin(y + β − γ)

sin(β − γ)
sin(z)

hold for all values of x, y, and z?

Motivation

Modern computers have made commonplace many calculations that were impossible to imagine a
few years ago. Still, when you face a problem with a high physical dimension, you immediately
encounter the Curse of Dimensionality [1, p.94]. This curse is that the amount of computing power
that you need grows exponentially with the dimension. The simplest manifestation of this curse
appears when you try to represent a function by its sample values on a grid. If a function of one
variable requires N samples, then an analogous function of n variables will need a grid of N n samples.
Thus, even relatively small problems in high dimensions are still unreasonably expensive.

A method has been proposed in [2] to address this problem, based on approximating a function
by a sum of separable functions:

f(x1, . . . , xn) ≈
r
∑

j=1

φj
1(x1)φ

j
2(x2) · · ·φ

j
n(xn). (2)

This representation would require only r nN samples, so if the approximation can be made suffi-
ciently accurate while keeping the separation rank r small, we can bypass the curse.

We describe here a particular test of (2), when the “straightforward” approximation is exact but
has very large separation rank. Although it may not be directly useful in applications, the result of
this test is surprising, positive, and, we believe, cute. It illustrates a richness of structure that invites
future study. Other mechanisms that allow representations of the form (2) with low separation rank
are described in [2].
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A Test Function

Our test function is sine of the sum of n variables, sin(
∑n

j=1
xj), which is a wave oriented in the

“diagonal” direction in n-dimensional space. One could use complex exponentials to express it as
the sum of two separable functions,

sin(

n
∑

j=1

xj) =
1

2i

n
∏

j=1

eixj −
1

2i

n
∏

j=1

e−ixj ,

but in our test we only allowed real functions.
You can use ordinary trigonometric identities to find such a representation. When n = 2 we have

sin(x + y) = sin(x) cos(y) + cos(x) sin(y), (3)

which expresses sin(x + y) as a sum of two separable functions. When n = 3 we have

sin(x + y + z) = sin(x) cos(y) cos(z) + cos(x) cos(y) sin(z)

+ cos(x) sin(y) cos(z) − sin(x) sin(y) sin(z), (4)

which uses four terms. The drawback to this approach is that, for n variables, the number of terms
is 2n−1. This exponential growth in the number of terms negates the benefit of using the form (2).
Indeed, if this really is the minimal number of terms needed, then the entire approach is doomed.

We then asked what the minimal number of terms is, and our program replied “n” and produced
graphs such as that shown in Figure 1(right). After some investigation, we determined the trigono-
metric identity that our program had uncovered. What is most remarkable is that the program was
numerical, not symbolic, and so uncovered a trigonometric identity without even knowing it was
doing trigonometry!

Any representation of a function of a sum of n variables will have n−1 free parameters, since one
can include n shifts xj → xj + aj and one linear constraint

∑n

j=1
aj = 0 and have

∑n

j=1
xj + aj =

∑n

j=1
xj . The identity that we present in Theorem 2 has n − 1 additional independent parameters,

which play a structural role in our representation. When n = 3, it provides an answer for our opening
teaser. The identity (1) holds for arbitrary α, β, and γ, as long as sin(α − β) 6= 0, sin(α − γ) 6= 0,
and sin(β − γ) 6= 0. Since these three parameters occur only as differences, only two of them are
independent. One can introduce two additional parameters as phase shifts to make versions of (1)
with different symmetries.

The Identity

Lemma 1 The function s(x) = sin(x) satisfies the equation

s(A + B) =
s(A)s(B + β − α)

s(β − α)
+

s(A + α − β)s(B)

s(α − β)
(5)

for all values of A, B, α, and β such that s(α − β) 6= 0 (and s(β − α) 6= 0).

Proof. With the notation c(x) = cos(x) and γ = β − α, partially expand the right-hand side using
the usual trigonometric identity (3) to obtain

s(A)

s(γ)
(s(B)c(γ) + c(B)s(γ)) +

s(B)

s(−γ)
(s(A)c(−γ) + c(A)s(−γ))

Multiplying out and using that s(x) is odd and c(x) is even, all terms cancel except for s(A)c(B) +
c(A)s(B), which we recognize as s(A + B). ¤
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Figure 1: left: Graphical separated representation of sin(x + y + z) using the usual trigonometric
identity (4). Each of the four rows gives the factors of a separable function. For example, the
first row corresponds to sin(x) cos(y) cos(z). The separable functions from each row are then added.
right: Graphical separated representation of sin(x + y + z) using (1) with α = 0, β = π/3, and
γ = 2π/3. The amplitude has been equidistributed.
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Theorem 2 Any function s(x) that satisfies (5) also satisfies

s





n
∑

j=1

xj



 =
n
∑

j=1

s(xj)
n
∏

k=1,k 6=j

s(xk + αk − αj)

s(αk − αj)
. (6)

for all choices of {αj} such that s(αk − αj) 6= 0 for all j 6= k.

The proof is by induction and is given in the Appendix. We can generate a more general form by
introducing n shifts aj :

s





n
∑

j=1

xj +

n
∑

j=1

aj



 =

n
∑

j=1

s(xj + aj)

n
∏

k=1,k 6=j

s(xk + ak + αk − αj)

s(αk − αj)
.

By choosing different ways to satisfy the linear constraint
∑n

j=1
aj = 0, we can produce a variety of

identities similar to (6) without modifying the parameters αj , which are the structural elements of
our representation. Note that in the set {αk−αj}k 6=j only n−1 parameters are linearly independent,
say {α1 − αj}

n
j=2.

Other Functions that Satisfy the Same Identity

Because of Lemma 1 and Theorem 2, we know that sin(
∑n

j=1
xj) is exactly separated with separation

rank n. Moreover, this function is peculiar in that sin(·) is the only function used in the separated
representation. We now consider the problem of finding other functions s(x) satisfying (6). Since
the general case (6) is equivalent to the n = 2 case, it is enough to describe all functions that satisfy
(5).

Lemma 3 The function s(x) = x satisfies the identity (5).

This and the following lemma may be verified directly.

Lemma 4 If s(x) satisfies (5), then so does

a exp(bx)s(cx)

for all complex a 6= 0, b, and c 6= 0.

Starting with our two basic functions sin(x) and x, we can use Lemma 4 to construct other
functions that satisfy (5), and then ask if we have missed any others. We only wish to consider
reasonably nice functions. The technical condition that we need for the proof of the following
theorem, given in the Appendix, is that s(x) be meromorphic.

Theorem 5 A meromorphic function s(x) satisfies (5) if and only if

s(x) = a exp(bx)x or s(x) = a exp(bx) sin(cx)

for some complex constants a 6= 0, b, and c 6= 0.

Extensions and Relationships with Other Identities

If in Theorem 2 we set xj = α for all j, we obtain the following corollary.

Corollary 6 Under the same conditions as in Theorem 2,

s(nα)

s(α)
=

n
∑

j=1

n
∏

k=1,k 6=j

s(α + αk − αj)

s(αk − αj)
.
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When s(x) = sin(x), this result is presented in [4]. For a proof using Lagrangian interpolation see [5,
page 272]. The approach of [4] and [5], however, does not produce the general results of Theorems 2
and 5. Conversely, our results can only be used to derive a few of the identities listed in [5, Section
2.4.5.3].

The situation is different if we consider Milne’s identity [6, 3]

1 −

n
∏

j=1

yj =

n
∑

j=1

(1 − yj)

n
∏

k=1,k 6=j

1 − yk θk/θj

1 − θk/θj

. (7)

We can obtain another proof of this identity by setting s(x) = 1− exp(x), αj = ln θj , and xj = ln yj

in (6). Conversely, (6) for s(x) = sin(x) can be obtained by setting yj = exp(−2ixj) and θj =
exp(−2iαj) in Milne’s identity, and then multiplying by exp(i

∑n

j=1
xj)/2i.

A “multiplicative” version of the identities that we have discussed can be derived by generalizing
this observation. Simply note that the identity

f(CD) =
f(C)f(Dφ/θ)

f(φ/θ)
+

f(Cθ/φ)f(D)

f(θ/φ)

is equivalent to (5) with the substitutions C = exp(A), D = exp(B), θ = exp(α), φ = exp(β), and
s(x) = f(exp(x)). Similarly, (6) is equivalent to

f(
n
∏

j=1

yj) =
n
∑

j=1

f(yj)
n
∏

k=1,k 6=j

f(ykθk/θj)

f(θk/θj)
. (8)

In analogy to Lemma 4, from the particular solutions f(x) = ln(x) and f(x) = 1 − x to (8) we can
generate other solutions to (8), namely

axbf(xc)

for constants a, b, and c. In this way we obtain a generalization of Milne’s identity.

Remarks and Conclusions

It is easy to extend our results to find similar identities for f(
∑n

j=1
xj), where f(x) could be cos(x),

cos2(x), or sin2(x), for example.
We also tested the function of six variables sin(u+v +w) sin(x+y + z). Using (1) on each factor

and then multiplying out yields a representation of the form (2) with 9 terms, but our program
found a representation with 8 terms. After considerable effort, we have still not been able to find
the formula analogous to (6) for this case.

A survey on the problem of exact separated representations is the book [7] by Rassias and Šimša.
As they pointed out in Problem 4 of page 158, to find a minimal rank representation for a separated
representation is still an open problem. We believe that our Theorems 2 and 5 are an example of
such minimal representations.

Lemma 1 can be proven geometrically, in a way similar to the geometric proof of the usual
identity (3). We have not been able to find a geometric interpretation of (6).

Appendix: Proofs

Proof of Theorem 2.
The case n = 2 is Lemma 1 with A = x1, B = x2, α = α1, and β = α2. The proof will be by

induction in n, so we assume (6) has been proven for n − 1. We will use (5) to separate out the
variable xn, then cancel like terms and reduce the n case to the n − 1 case.
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First expand the left-hand side of (6) using (5) with A =
∑n−1

j=1
xj , B = xn, α = αn−1, and

β = αn to obtain

s





n−1
∑

j=1

xj





s(xn + αn − αn−1)

s(αn − αn−1)
+ s





n−1
∑

j=1

xj + αn−1 − αn





s(xn)

s(αn−1 − αn)
. (9)

On the right-hand side of (6), first separate off the j = n term in the sum. When j 6= n, we
expand the k = n term in the product using (5) with A = αn −αj , B = xn, α = αn−1, and β = αn.
Explicitly, the k = n term is

s(xn + αn − αj)

s(αn − αj)
=

1

s(αn − αj)

(

s(αn − αj)s(xn + αn − αn−1)

s(αn − αn−1)
+

s(αn−1 − αj)s(xn)

s(αn−1 − αn)

)

=
s(xn + αn − αn−1)

s(αn − αn−1)
+

(

s(αn−1 − αj)

s(αn − αj)

)(

s(xn)

s(αn−1 − αn)

)

.

Note that the first term does not depend on j, and that when j = n − 1 the second term is absent.
Combining these expansions, we can express the right-hand side of (6) as





n−1
∑

j=1

s(xj)

n−1
∏

k=1,k 6=j

s(xk + αk − αj)

s(αk − αj)





s(xn + αn − αn−1)

s(αn − αn−1)

+





n−2
∑

j=1

s(xj)
s(αn−1 − αj)

s(αn − αj)

n−1
∏

k=1,k 6=j

s(xk + αk − αj)

s(αk − αj)





s(xn)

s(αn−1 − αn)
(10)

+ s(xn)
n−1
∏

k=1

s(xk + αk − αn)

s(αk − αn)
.

Now compare our expansions (9) and (10) of the two sides of (6). Using the induction hypothesis
at n − 1, we can see that the first terms in (9) and (10) are equal, and so cancel. The remaining
terms all have a factor of s(xn) in the numerator and s(αn−1 − αn) in the denominator, which we
can also cancel. Thus we have reduced the proof to showing that

s





n−1
∑

j=1

xj + αn−1 − αn



 =
n−2
∑

j=1

s(xj)
s(αn−1 − αj)

s(αn − αj)

n−1
∏

k=1,k 6=j

s(xk + αx − αj)

s(αk − αj)

+ s(xn−1 + αn−1 − αn)

n−2
∏

k=1

s(xk + αk − αn)

s(αk − αn)
.

Now make the substitutions x̃n−1 = xn−1 + αn−1 − αn and α̃n−1 = αn and rearrange to obtain

s





n−2
∑

j=1

xj + x̃n−1



 =

n−2
∑

j=1

s(xj)
s(x̃n−1 + α̃n−1 − αj)

s(α̃n−1 − αj)

n−2
∏

k=1,k 6=j

s(xk + αk − αj)

s(αk − αj)

+ s(x̃n−1)

n−2
∏

k=1

s(xk + αk − α̃n−1)

s(αk − α̃n−1)
.

We recognize this equation as the n − 1 case of (6), which is true by the induction hypothesis. ¤

The proof of Theorem 5 depends on two lemmas.
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Lemma 7 If a meromorphic function s(x) satisfies (5), then there exists a complex constant b such
that exp(−bx)s(x) is an odd function.

Lemma 8 An odd meromorphic function s(x) satisfies (5) if and only if

s(x) = ax or s(x) = a sin(cx)

for some complex constants a 6= 0 and c 6= 0.

Proof of Theorem 5, given Lemmas 7 and 8.
We have already shown that these functions satisfy (5), so we need only show there are no more

solutions. We now assume s(x) satisfies (5) and will deduce its properties.
Using Lemma 7, we know that h(x) = exp(−bx)s(x) is an odd function. By Lemma 4, h(x)

also satisfies (5). Then, by Lemma 8, h(x) is either ax or a sin(cx), so s(x) = a exp(bx)x or
s(x) = a exp(bx) sin(x), which completes the proof. ¤

The proofs of Lemmas 7 and 8 use the fact that s(0) = 0. By setting β − α = A in (5) and
subtracting s(A + B) from both sides we obtain

0 =
s(0)s(B)

s(−A)
,

valid for all A such that s(−A) 6= 0 and for all B. Choosing B such that s(B) 6= 0 implies that
s(0) = 0.

Proof of Lemma 7.
We define the auxiliary meromorphic function

F (x) = −
s(x)

s(−x)
, (11)

which cannot be identically zero, and show that it satisfies the functional equation

F (x + w) = F (x)F (w). (12)

This functional equation is only satisfied by exponentials, so we can conclude that F (x) = exp(2bx)
for some constant b. Rewriting this condition in terms of s, we have exp(−bx)s(x) = − exp(bx)s(−x),
which is what we are trying to show.

To show (12), we substitute in (11) and manipulate to form the equivalent equation

0 =
s(x)s(w)

s(x + w)
+

s(−w)s(−x)

s(−x − w)
. (13)

Using (5) with A = x, B = −x, α = −x, and β = w, we conclude that the right-hand side of (13) is
equal to s(0) = 0. ¤

Proof of Lemma 8.
Taking a derivative with respect to A in (5), using the fact that s is odd, and setting A = −α,

B = α and β = −α, we obtain
s′(0)s(2α) = 2s(α)s′(α).

Thus, s′(0) 6= 0, and because of the invariance with respect to multiplication by constants, we can
assume s′(0) = 1. We have the system

{

s′(0) = 1
s(2α) = (s2(α))′.
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Since s(0) = 0, we know that s is analytic around zero. We can write s(z) =
∑∞

k=0
akz2k+1 and

use the previous conditions to obtain a recurrence for the sequence an,
{

a0 = 1
22n+1an = (2n + 2)

∑n

k=0
an−kak.

(14)

The value of an for n > 1 is uniquely determined by the value of a1, which is arbitrary. Setting
λ = 6a1 we claim

an =
λn

(2n + 1)!
. (15)

When λ = 0 we have s(x) = x and when λ 6= 0 we have s(x) = sin(λx) and the Lemma follows . We
prove the claim by generalized induction on the variable n. Thus we assume (15) for 0 ≤ n ≤ N −1,
and show it for n = N . Using (14) with n = N ,

22N+1aN = (2N + 2)

N
∑

k=0

aN−kak

= 2(2N + 2)a0aN + (2N + 2)

N−1
∑

k=1

λN−k

(2(N − k) + 1)!

λk

(2k + 1)!
,

and thus

aN =
λN

(2N + 1)!

1

22N+1 − 2(2N + 2)

N−1
∑

k=1

(

2N + 2

2k + 1

)

,

and the result follows because
∑N

k=0

(

2N+2

2k+1

)

= 22N+1 . ¤
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