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(Received 11 September 2012; accepted 4 June 2013; published online 24 June 2013)

Our previously described method to approximate the many-electron wavefunction in
the multiparticle Schrödinger equation reduces this problem to operations on many
single-electron functions. In this work, we analyze these operations to determine
which function spaces are appropriate for various intermediate functions in order to
bound the output. This knowledge then allows us to choose the function spaces in
which to control the error of a numerical method for single-electron functions. We
find that an efficient choice is to maintain the single-electron functions in L2 ∩ L4, the
product of these functions in L1 ∩ L2, the Poisson kernel applied to the product in L4, a
function times the Poisson kernel applied to the product in L2, and the nuclear potential
times a function in L4/3. Due to the integral operator formulation, we do not require
differentiability. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811396]

I. INTRODUCTION

We consider the time-independent, non-relativistic, N-electron multiparticle Schrödinger equa-
tion with the Born-Oppenheimer approximation that the nuclei are point charges. This equation is
an eigenproblem Hψ = λψ . The eigenvalues λ correspond to energies and the smallest energies
are of greatest interest. The wavefunction ψ is a function of N variables, each of which has a three-
dimensional spatial part r = (x, y, z) and a spin variable σ ∈ {− 1/2, 1/2}, which we combine as γ

= (r, σ ). The wavefunction ψ is also required to be antisymmetric under the exchange of any two
γ i and γ j for i �= j , a constraint that can be written as Aψ = ψ where A is the orthogonal projector
onto the space of antisymmetric functions. The Hamiltonian H = T + V + W consists of kinetic,
nuclear potential, and inter-electron potential operators defined, respectively, by

T = −1

2

N∑
i=1

∇2
i , V =

N∑
i=1

V (ri ) , and W = 1

2

N∑
i=1

N∑
j �=i

1

‖ri − r j‖ . (1)

The differential operator ∇2 is a three-dimensional Laplacian, and the potential V (r) is a sum of
terms of the form − Za/‖r − ra‖ from a nucleus of charge 0 < Za at position ra.

Following the paradigm of separated representations,1, 2 in Ref. 3 we developed methods to
compute approximate wavefunctions of the form

ψ(R)(γ1, γ2, . . . , γN ) = A
R∑

l=1

N∏
i=1

φl
i (γi ), (2)

where the number of terms R controls the quality of the approximation. The novelty introduced in
Ref. 3 is that the single-electron functions φl

i in (2) are unconstrained: they need not come from
some basis set, follow some excitation pattern, or satisfy orthogonality conditions. Even without
constraints, the representation (2) shares certain well-known flaws with the configuration interaction
method. To alleviate these flaws, we extended the methods of Ref. 3 to scale properly for large
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systems4 and to capture the inter-electron cusp.5 See the introduction to Ref. 5 for an extended
discussion of the motivation for this approach and comparison with other approaches. Briefly, the
advantage of this approach is that it may allow very efficient expansions and an unbiased exploration
of the structure of the wavefunction. The first disadvantage of this approach is that conceptual
novelties in it require new mathematics and algorithms to be developed. In Refs. 4 and 5 we filled in
some of the required pieces, and in the current work we fill in another piece. The second disadvantage
is that it might fail. Specifically, the gains from having very efficient representations may not be
worth the trouble of finding them. Resolving this issue requires the completion of the mathematical
and algorithm development and then numerical comparisons with existing methods.

In Sec. I A, we sketch the algorithm from Ref. 3. The algorithm reduces to a sequence of
operations on functions of a single electron coordinate γ . In Sec. I B, we introduce the main subject
of this paper, which is the analysis of these operations on the single-electron functions with the goal
of determining which function spaces are appropriate for various intermediate functions in order to
bound the output. The analysis is surprisingly, and at times unpleasantly, rich.

A. Sketch of the algorithm

We give only a skeletal sketch of the algorithm, and in particular refer the reader to Ref. 3 for
a proper discussion of the origins and attribution of the component ideas. The algorithm starts with
an initial estimate μ ≈ λ and initial {φl

i }i,l and then proceeds as follows:

Loop 1: until μ converges.

Copy {φl
i }i,l to {φ̃l

i }i,l .

Loop 2: until {φl
i }i,l converges.

Copy: {φ̃l
i }i,l to {φl

i }i,l and normalize.

Loop 3: until {φ̃l
i }i,l converges.

Loop 4: k = 1, . . . , N.

Update: {φ̃l
k}l using μ, {φl

i }i,l , and {φ̃l
i }i,l .

Update: μ using {φl
i }i,l and {φ̃l

i }i,l .

The update of μ in Loop 1 uses ψ formed from {φl
i }i,l via (2) and ψ̃ formed from {φ̃l

i }i,l via
(2), which correspond to the previous and newest approximate wavefunctions produced in Loop 2.
In Sec. II B, we (re)derive and justify the update rule

μ ← μ − 〈(ψ − ψ̃), (V + W)ψ〉
‖ψ̃‖2

. (3)

To a product
∏N

i=1 φi (γi ) we associate a column vector of N functions of a single variable,

� = [φ1, φ2, · · · , φN ]∗ , (4)

where ( · )* denotes (conjugate) transpose; we also use � as shorthand for the product itself. The
antisymmetric inner product of two such products is computed by (Löwdin’s rule)

〈A�̃,A�〉 = 〈A�̃,�〉 = 1

N !
|L| (5)

using the matrix L with entries

L(i, j) = 〈φ̃i , φ j 〉. (6)

To compute antisymmetric inner products involving V orW , first compute L from (6), then construct
� = L−1�̃, and then use the formulas

〈A�̃,V�〉 = |L|
N !

∫
V �∗�dγ and (7)

〈A�̃,W�〉 = 1

2

|L|
N !

∫
�∗�WP

[
�∗�

] + �∗WP
[
��∗]�dγ, (8)
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where

WP [ f ](r) =
∫

1

‖r − r′‖ f (γ ′)dγ ′ =
∑

σ ′∈{−1/2,1/2}

∫
1

‖r − r′‖ f (r′, σ ′)dr′ . (9)

We can thus compute the update of μ (3) by linear combinations of computations using (5), (7),
and (8).

Loop 2 is a Green function iteration. For μ < 0, define the Green function

Gμ = (T − μI)−1. (10)

The differential eigenvalue problem Hψ = (T + V + W)ψ = λψ corresponds to the integral equa-
tion −Gλ(V + W)ψ = ψ . Given an estimate μ ≈ λ for the lowest eigenvalue, one can perform a
power iteration

ψ̃ ← −Gμ[(V + W)ψ] and (11)

ψ ← ψ̃/‖ψ̃‖ (12)

to produce an approximate eigenfunction. Note that (11) preserves the antisymmetry constraint
ψ = Aψ .

Loops 3 and 4 are an iterative least-squares fitting. To maintain the representation (2) with R
fixed we replace (11) with the definition that ψ̃ is the function of the form (2) that minimizes the
error

‖ψ̃ − (−Gμ[(V + W)ψ])‖. (13)

Loop 3 controls the overall convergence of ψ̃ and Loop 4 varies which functions {φ̃l
k}l we optimize

over.
The innermost update of {φ̃l

k}l is a linear least-squares problem, which can be solved by solving
a linear system Ax = b (the normal equations). For k = 1, the matrix A consists of integral operators
defined by

A(l, l ′)(γ, γ ′) =
〈
Aδ(γ − γ1)

N∏
i=2

φ̃l
i (γi ), δ(γ ′ − γ1)

N∏
i=2

φ̃l ′
i (γi )

〉
(14)

and the vector b consists of functions defined by

b(l)(γ ) =
R∑

m=1

〈
Aδ(γ − γ1)

N∏
i=2

φ̃l
i (γi ),−Gμ[V + W]

N∏
i=1

φm
i (γi )

〉
. (15)

The entries of A in (14) are computed by modifying (5) to account for the delta functions. Defining
w(γ ′) = [

φ̃l
2(γ ′) . . . φ̃l

N (γ ′)
]∗

, y(γ ) = [
φ̃l ′

2 (γ ) . . . φ̃l ′
N (γ )

]∗
, and

D =

⎡
⎢⎢⎣

〈φ̃l
2, φ̃

l ′
2 〉 · · · 〈φ̃l

2, φ̃
l ′
N 〉

...
. . .

...

〈φ̃l
N , φ̃l ′

2 〉 · · · 〈φ̃l
N , φ̃l ′

N 〉

⎤
⎥⎥⎦ , (16)

we have

A(l, l ′)(γ, γ ′) = |D|
N !

(
δ(γ − γ ′) − y∗(γ )D−1w(γ ′)

)
. (17)

To compute b, we first approximate the Green function as a sum of Gaussian convolution operators.
Since Gaussians are separable, we obtain a separated representation

Gμ ≈
J∑

j=1

N⊗
i=1

F j
ri
, (18)
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where the subscript ri indicates in which variable the operator is applied, the superscript j indicates
which operator to apply, and the dependence on μ is implicit. We then have

b(l)(γ ) ≈ −
R∑

m=1

J∑
j=1

〈
AF j

r1
δ(γ − γ1)

N∏
i=2

F j
ri
φ̃l

i (γi ), [V + W]
N∏

i=1

φm
i (γi )

〉
. (19)

For fixed indexes l, m, and j, all the terms in (19) are of the form〈
AFr1δ(γ − γ1)

N∏
i=2

Fri φ̃i (γi ), [V + W]
N∏

i=1

φi (γi )

〉
. (20)

To evaluate them, we modify the formulas (7) and (8) to account for the presence of F and δ(γ −
γ 1). First, construct the matrix of inner products L (6) but using F φ̃i in place of φ̃i . Then construct
a vector d that is orthogonal to all but the first row of L and has norm one. Let E be the matrix L
with the first row replaced by d* and let � = E−1F�̃. Then (20) is computed by

|E|
N !

F
[
�∗d

∫
V �∗�dγ ′ − �∗

∫
V �∗d�dγ ′ + 1

2
�∗d

∫
�∗�WP

[
�∗�

]
dγ ′

− 1

2
�∗d

∫
�∗WP

[
��∗]�dγ ′ − �∗

∫
�WP

[
�∗�

]
�∗ddγ ′ − �∗

∫
��∗WP

[
��∗d

]
dγ ′

+ V �∗d + �∗dWP
[
�∗�

] − �∗WP
[
��∗d

]]
(γ ). (21)

In this formula, the integrands are all functions or vectors of functions of the suppressed variable γ ′,
so after integration they yield scalars or column vectors. Applying �* or �*d on the left yields a
function. In the last row, where there are no integrals, we directly obtain a function. Applying F to
the sum of all these functions yields a single function of γ .

The algorithm is thus performed using only linear combinations of computations of the forms
(5), (7), (8), (17), and (21) which only use operations on the single-electron functions {φl

i }i,l and
{φ̃l

i }i,l . Thus the algorithm reduces the N-electron problem to operations on the single-electron
functions. The operations required are:

• product of functions;
• inner product of functions;
• multiplication of a function by the nuclear potential V ;
• application of WP [·], which is convolution with the Poisson kernel 1/‖r‖; and
• application of operators F , which are convolutions with Gaussians.

The operations used in (5), (7), (8), and (17) are a subset of those needed for (21) so we restrict
our discussion to (21). The operations in (21) are performed according to the diagram

φ, θ, φ̃, θ̃, ˜̃φ

F φ̃,F ˜̃φ φθ, φ̃θ̃ WP [φθ] φ̃WP [φθ] V φ

V, φθ φ̃θ̃,WP [φθ]

F φ̃ V, φθ ˜̃φ φ̃θ̃,WP [φθ] F φ̃WP [φθ] FV φ

(22)
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where φ, θ, φ̃, θ̃ , ˜̃φ are single-electron functions. Note that (22) does not include any projections
onto a basis set, but instead asks for accurate representations of functions.

B. Operations on single-electron functions

The numerical method used for the operations in (22) is independent of Ref. 3, and hence in
Refs. 3, 4, and 5 we did not address it, or provide overall numerical results. In principle a suitable
numerical method was demonstrated in Refs. 6 and 7, but when we tried to use it as implemented
in Ref. 8 there were unacceptable losses of accuracy. With hindsight the cause is clear: Controlling
the error of φl

i in L2 does not bound the error of the results of the operations in (22). If we assume
only that φl

i ∈ L2 and track the function spaces to which the objects in (22) belong, we obtain

L2

L[2,∞] (etc.) L1 L∅ L∅ L∅

unbounded unbounded

? ? ? ?

(23)

where L∅ indicates that the function is not in any Lp space and L[2, ∞] indicates that it is in Lp for 2
≤ p ≤ ∞. Since the outputs of (22) will be used in an iteration, they should have the same properties
as the inputs, but in (23) they do not. The functions φl

i are actually in much nicer function spaces
than L2, both from general theoretical considerations9 and because the operator F that produced
them in the previous iteration is very nice. The problem is that the difference between φl

i and its
numerical approximation is only known to be in L2, and this error propagates according to (23). For
example, if φ is some nice function and we approximate it with f such that ‖φ − f‖2 < ε, then the
error ‖V (φ − f )‖p can be infinite.

The goals of the current paper are:

1. Determine function spaces so that the operations in (22) produce bounded errors.
2. From among those function space options that produce bounded errors, select those that will

be most efficient to implement.
3. Provide bounds and benchmark problems that can be used to test numerical methods to see if

they are good enough to use for (22).

As a preliminary step, in Sec. II C, we analyze the Green function and its approximation (19) so
that we can reduce our analysis to a single Gaussian convolution F rather than a collection of them.
We also note that the presence of the spin coordinate σ introduces at worst a small constant in the
bounds, so we replace the combined variable γ with the physical variable r for our further analysis.

The natural function space in which to consider φl
i is the Sobolev space H 1(R3), since that is

the smallest space in which the energy computation is meaningful when N = 1. When we assume
φl

i ∈ H 1, then the function space diagram becomes

H1

H1 (etc.) L[1,3] L(3,∞] L(6/5,6] L(6/5,2]

bounded bounded

H1 (etc.) H1 (etc.) H1 (etc.) H1 (etc.)

(24)

and the diagram completes successfully, with bounded errors.
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On the other hand, we use an integral operator formulation of the problem, so none of our
operations involve differentiation. Although one cannot directly compute the energy without (at
least weak) differentiation, one can infer the energy from the integral equation. In Sec. II B, we
derive such an energy estimate. The Sobolev embedding theorem says H 1(R3) ⊂ L6(R3), so we
have H1 ⊂ L[2, 6]. We therefore consider L[2, 6] as our candidate for a space that does not use
derivatives but is only slightly weaker than H1. If we replace H1 with L[2,6], then the function space
diagram becomes

L[2,6]

L[2,6] (etc.) L[1,3] L(3,∞] L(6/5,6] L(6/5,2)

bounded bounded

L[2,∞] (etc.) L[2,∞] (etc.) L(6/5,∞] (etc.) L(6/5,∞] (etc.) .

(25)

Since L(6/5,∞] ⊂ L[2,∞] ⊂ L[2,6] these operations successfully return us to our original space. The
only substantial change from (24) is that we no longer have V φ ∈ L2.

Having boldly discarded differentiability, we can then consider weakening our function spaces
further. All else being equal, weaker function spaces place weaker requirements on the numerical
method, and thus should allow easier/faster codes. We can weaken L[2,6] by considering L[2,u] for
some u < 6. (We require L2 for basic inner products, so we do not consider weakening at the L2 end.)
We find that 3 < u allows successful completion of the diagram, but at u = 3 the scalar |〈V, φθ〉|
becomes unbounded. Under the assumption 3 < u, the function space diagram becomes

L[2,u]

L[2,∞] (etc.) L[1,u/2] L(3,∞] L(6/5,u] L(6/5,3u/(3+u))

bounded bounded

L[2,∞] (etc.) L[2,∞] (etc.) L(6/5,∞] (etc.) L(6/5,∞] (etc.) .

(26)

In Sec. III, we present our main analysis of these function space diagrams. First, we demonstrate the
divergence of (23). Then we prove (26), which contains (25) as a corollary, and then enhance (25)
to obtain (24).

The above analysis indicates what we can do, but is not sufficient to determine what we should
do. From among the allowed options, we need to specify in which norms the numerical algorithm
should control the errors in which objects. We restrict ourselves to combinations of Lp-spaces based
on (26). We do not argue specifically against H1, mainly because we have found no good way to
compare against it. We also wish to allow methods that use discontinuous basis functions6–8 and so
cannot control H1 error. For similar reasons, we do not consider Besov spaces or other spaces. To
make these decisions we consider three primary factors:

1. A weaker function space is preferred since it is easier for the numerical method to accomplish.
2. Spaces should be chosen to allow the singularities in the operators to be truncated at as large

a radius as possible.
3. Spaces should be chosen to give the best bounds on the final outputs.

The analysis is complicated by the fact that multiple norms are in use and several of the
operations are nonlinear. Without further information, we cannot make our decisions. We therefore
consider a test case, the “core orbital,” which is the exact solution for one electron on one atom.
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We use the core orbital to select parameters in the operators and to test the bounds. In Sec. IV, we
introduce the core orbital and use it to analyze the influence of the choice of spaces on the bounds
and truncation radii. Based on our analysis we recommend that the spaces be chosen as

L2 ∩ L4

L2 ∩ L4 L1 ∩ L2 L4 L2 L4/3

(scalar) (scalar)

L2 ∩ L4 L2 ∩ L4 L2 ∩ L4 L2 ∩ L4 .

(27)

The choice of WP [φθ ] ∈ L4 is the result of balancing larger truncation radius for Lp with smaller
p against bounds exploding due to the constraint 3 < p. The choice of V φ ∈ L4/3 balances the
truncation radii for V φ and F .

In Sec. V, we gather information useful for implementing and testing numerical methods trying
to perform the operations in (22) while controlling the error in the spaces in (27). First, we collect
bounds from throughout the paper and insert the parameters in (27) to provide a complete list of the
bounds used for (27). Next we collect the truncation radii allowed for the cusps and singularities
using the parameters in (27). Then we account for linear combinations present in (21) but neglected
in (22). Then we present formulas for accurately computing antisymmetric inner products when the
matrices involved are ill-conditioned. Finally, we provide a list of benchmark problems to use for
validation and performance testing the method.

In this paper we prove that to perform the iteration in Ref. 3 it is sufficient for the numerical
method for the single-electron functions to do the operations in (22) while controlling the error
in the spaces in (27), we argue that (27) is an efficient choice, and we provide information to aid
the implementation and testing of such a method. Development of enhancements to the numerical
methods in Refs. 6–8 to satisfy our requirements is in progress and will be reported elsewhere.

II. PRELIMINARY ANALYSIS

In this section, we first collect some background information, then discuss estimating the energy
in the integral formulation, and then analyze the convolutions in the Green function to reduce our
analysis to the operations in (22).

A. Function space basics

(See, e.g., Ref. 10.) For a function on some domain 
, its Lp norm for 1 ≤ p < ∞ is defined by

‖ f ‖p =
(∫




| f (t)|p dt

)1/p

, (28)

and its L∞ norm is defined by

‖ f ‖∞ = ess.sup.
t∈


| f (t)|, (29)

which for continuous functions is equivalent to

‖ f ‖∞ = max
t∈


| f (t)|. (30)

Those functions with finite ‖f‖p are said to lie in Lp(
). The L2 inner product is defined by

〈 f, g〉 =
∫




f (t)g(t) dt (31)
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(for real functions). Hölder’s inequality states

|〈 f, g〉| ≤ ‖ f ‖p‖g‖q for
1

p
+ 1

q
= 1 with 1 ≤ p, q ≤ ∞. (32)

For functions on a domain such that t ∈ 
 and t′ ∈ 
 implies t − t′ ∈ 
, convolution is defined by

( f ∗ g)(t) =
∫




f (t − t ′)g(t ′)dt ′. (33)

The Sobolev space H 1(Rd ) = W 1,2(Rd ) consists of functions with finite value for the norm

‖ f ‖H 1 =
(∫

| f̂ (ξ )|2 +
d∑

i=1

|ξi f̂ (ξ )|2dξ

)1/2

, (34)

where f̂ is the Fourier transform of f and ξ = (ξ 1, . . . , ξ d). We can write the norm as

‖ f ‖H 1 = (‖ f ‖2
2 + ‖∇ f ‖2

2

)1/2
, (35)

with the implicit understanding that the gradient may only exist weakly. For our analysis we will
separate the H1 norm into L2 norm and the L2 norm of the (weak) gradient, denoted L2

∇ .

B. Energy estimate and update

Our goal is to solve the eigenproblemHψ = λψ for the minimal λ with the constraintAψ = ψ .
The iteration (11) and (12) only provides an approximate ψ , so we still need a method to estimate
λ. The step (11) uses μ ≈ λ, so the quality of ψ is limited by the quality of μ ≈ λ. Thus we also
need a method to update and improve μ.

For ψ satisfying Hψ = λψ and Aψ = ψ , the eigenvalue λ is the energy. The energy for any
ψ = Aψ is defined by the Rayleigh quotient

〈ψ,Hψ〉
‖ψ‖2

. (36)

The expression (36) is variational, which provides two useful properties. First, the difference between
this energy and λ is quadratic in the difference between ψ and the eigenfunction. Second, the energy
produced by (36) is bounded below by λ, and so (36) provides and upper bound on λ. The numerator
in (36) is computed using (7), (8), and

〈A�̃, T �〉 = 1

2

|L|
N !

∫ (−∇2�∗)�dγ. (37)

In order to compute (37), we need∫
θ (r)

(−∇2φ
)∗

(r)dγ = 〈θ,−∇2φ〉 = 〈∇θ,∇φ〉 (38)

to make sense and be finite. The minimal condition to assure this is φ, θ ∈ H1. We can then bound
by

|〈∇θ,∇φ〉| ≤ ‖∇θ‖2‖∇φ‖2. (39)

To avoid requiring H1, we wish to have an energy estimate that only uses integral quantities.
Let us assume that the iteration (11) and (12) has converged, so that we have found an eigenfunction
ψμ and eigenvalue αμ of the Lippmann-Schwinger integral equation

−Gμ(V + W)ψμ = αμψμ. (40)
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Inserting ψμ into (36) and using (40), we obtain

〈ψμ,Hψμ〉
‖ψμ‖2

= 〈ψμ, [μI + (T − μI) + (V + W)] ψμ〉
‖ψμ‖2

= μ + 〈ψμ, (T − μI)(−1/αμ)Gμ(V + W)ψμ〉 + 〈ψμ, (V + W)ψμ〉
‖ψμ‖2

= μ −
(

1 − αμ

αμ

) 〈ψμ, (V + W)ψμ〉
‖ψμ‖2

. (41)

If (40) is solved exactly, then (41) retains the variational properties of (36).
Now we observe from (40) and (41) that ψμ is an eigenfunction of H with eigenvalue μ if

and only if αμ = 1. Defining f(μ) = αμ − 1, we can apply a step of Newton’s method to obtain
the update rule μ ← μ − f(μ)/f ′(μ). (The following argument to compute f ′(μ) = dαμ/dμ is due
to Gregory Beylkin.) Applying G−1/2

μ to both sides of (40) and rearranging, we obtain the related
normalized eigenvalue equation

−G1/2
μ (V + W)G1/2

μ

G−1/2
μ ψμ

‖G−1/2
μ ψμ‖

= αμ

G−1/2
μ ψμ

‖G−1/2
μ ψμ‖

, (42)

which has the form Lμgμ = αμgμ with Lμ self-adjoint and 〈gμ, gμ〉 = 1. Taking the inner product
of both sides of (42) with gμ and solving for αμ, we obtain αμ = 〈

Lμgμ, gμ

〉
. Differentiating with

respect to μ and using (42) we obtain

dαμ

dμ
=
〈

dLμ

dμ
gμ, gμ

〉
+
〈
Lμ

dgμ

dμ
, gμ

〉
+
〈
Lμgμ,

dgμ

dμ

〉

=
〈

dLμ

dμ
gμ, gμ

〉
+
〈

dgμ

dμ
,Lμgμ

〉
+
〈
Lμgμ,

dgμ

dμ

〉

=
〈

dLμ

dμ
gμ, gμ

〉
+ αμ

d

dμ

〈
gμ, gμ

〉 = 〈
dLμ

dμ
gμ, gμ

〉
. (43)

Using the explicit form G1/2
μ = (T − μI)−1/2 we can compute dG1/2

μ /dμ = G3/2
μ /2 and so

dLμ

dμ
= −1

2
G3/2

μ (V + W)G1/2
μ − 1

2
G1/2

μ (V + W)G3/2
μ . (44)

Inserting into (43) and manipulating, we obtain

dαμ

dμ
=
〈[

−1

2
G3/2

μ (V + W)G1/2
μ − 1

2
G1/2

μ (V + W)G3/2
μ

] G−1/2
μ ψμ

‖G−1/2
μ ψμ‖

,
G−1/2

μ ψμ

‖G−1/2
μ ψμ‖

〉

=1

2

〈[−Gμ(V + W) − (V + W)Gμ

]
ψμ,ψμ

〉
〈
G−1/2

μ ψμ,G−1/2
μ ψμ

〉

=1

2

〈−Gμ(V + W)ψμ,ψμ

〉 + 〈
ψμ,−Gμ(V + W)ψμ

〉
〈
G−1

μ ψμ,ψμ

〉
=1

2

2αμ

〈
ψμ,ψμ

〉
〈
G−1

μ (−αμ)−1Gμ(V + W)ψμ,ψμ

〉 = −α2
μ

〈
ψμ,ψμ

〉
〈
(V + W)ψμ,ψμ

〉 . (45)

Thus Newton’s method yields the update rule

μ ← μ − f (μ)

f ′(μ)
= μ −

(
1 − αμ

α2
μ

) 〈
ψμ, (V + W)ψμ

〉
∥∥ψμ

∥∥2 . (46)

We do not expect (40) to be solved exactly since we may not wait for (11) and (12) to converge,
and in any case we make an error in our approximation (13). Thus we need to modify (41) and (46)
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to use ψ and ψ̃ = −Gμ(V + W)ψ as in (11). We propose to use

μ − 〈(ψ − ψ̃), (V + W)ψ〉
〈ψ, ψ̃〉 and (47)

μ ← μ − 〈(ψ − ψ̃), (V + W)ψ〉
‖ψ̃‖2

, (48)

which reduce to (41) and (46) when ψμ is inserted. The update rule (48) was given in Ref. 7 with
the following derivation. Assume ψ is the true wavefunction, but μ �= λ. Then we have

ψ = −Gλ(V + W)ψ = −Gμ(V + W)ψ − (λ − μ)G2
μ(V + W)ψ + O((λ − μ)2). (49)

Neglecting the second-order term, taking the inner product with (V + W)ψ , and rearranging, we
obtain

〈ψ, (V + W)ψ〉 ≈ 〈−Gμ(V + W)ψ, (V + W)ψ
〉 + 〈−(λ − μ)G2

μ(V + W)ψ, (V + W)ψ
〉

⇒ 〈ψ, (V + W)ψ〉 ≈ 〈
ψ̃, (V + W)ψ

〉 − (λ − μ)
〈−Gμψ̃, (V + W)ψ

〉
⇒ (λ − μ)

〈
ψ̃, ψ̃

〉 ≈ 〈
ψ̃ − ψ, (V + W)ψ

〉
. (50)

Solving for λ yields (48).

C. Analysis of the Gaussian convolutions in the Green function

In this section, we determine the effect of the Green function and its component convolutions.

1. Convolution and Gaussians

For convolutions (33), Young’s inequality states

‖ f ∗ g‖s ≤ ‖ f ‖p‖g‖q for
1

p
+ 1

q
= 1

s
+ 1 with 1 ≤ p, q, s ≤ ∞. (51)

Under the assumption that f is continuously differentiable and all the integrals converge

∇ ( f ∗ g) = ∇r

(∫
f (r − r′)g(r′)dr

)
=
∫ (∇r f (r − r′)

)
g(r′)dr = (∇ f ) ∗ g. (52)

The Fourier transform of a Gaussian in dimension d (see, e.g., Ref. 11) is∫
exp(−πτ‖r‖2) exp(−2π i〈ξ, r〉)dr = τ−d/2 exp(−π‖ξ‖2/τ ), (53)

where ξ is also a d-dimensional variable. The special case ξ = 0 provides∫
exp(−πτ‖r‖2)dr = τ−d/2 (54)

and consequently

‖ exp(−πτ‖r‖2)‖p =
(∫

exp(−πpτ‖r‖2)dr
)1/p

= (pτ )−d/(2p). (55)

The integral representation for the Gamma function in Refs. 12 and 17 (Eq. (5.9.1)) provides the
integral

�(ν)

zν
=
∫ ∞

0
exp(−zs)sν−1ds for 0 < z and 0 < ν. (56)
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Setting z = 1 serves as a definition for the Gamma function. Using this integral identity we can also
compute explicitly in d = 3 that∥∥∥∇e−α‖r‖2

∥∥∥
p

=
∥∥∥∥(∇e−α‖r‖2 · ∇e−α‖r‖2

)1/2
∥∥∥∥

p

=
∥∥∥−2α‖r‖e−α‖r‖2

∥∥∥
p

=
(

4π (2α)p
∫ ∞

0
e−αpr2

r p+2dr

)1/p

=
(

2π (2α)p
∫ ∞

0
e−αpt t (p+1)/2dt

)1/p

= α−(p+1)/(2p)2
(
2π�((p + 3)/2)p−(p+3)/2

)1/p
. (57)

2. Integral representation of the Green function

The Green function Gμ = (T − μI)−1 in (10) is a convolution operator and thus is defined by
its kernel. The Fourier transform of the kernel is given explicitly by

Ĝμ(z) = 1

2π2‖z‖2 − μ
, (58)

where z ∈ R3N . Setting ν = 1 in (56) and using the change of variables s = et we obtain

1

z
=
∫ ∞

−∞
exp

(−zet + t
)

dt. (59)

Substituting z = (2π2‖z‖2 − μ)/( − μ) and then dividing by − μ gives

Ĝμ(z) =
∫ ∞

−∞

exp
(−et + t

)
−μ

exp

(
−2π2et

−μ
‖z‖2

)
dt. (60)

Applying the 3N-dimensional inverse Fourier transform yields

Gμ =
∫ ∞

−∞

N⊗
i=1

Fri (t) dt, (61)

where Fri (t), which depends implicitly on μ, is the operator that convolves with the Gaussian

F(t) =
(

exp
(−et + t

)
−μ

)1/N ( −μ

2πet

)3/2

exp

(
−−μ

2et
‖r‖2

)
(62)

in the variable ri. By discretizing (61) we will obtain an approximation for Gμ as a sum of separable
convolutions with Gaussians. For our analysis of norms in Sec. II C 3 we will keep the integral form
and then in Sec. II C 4 consider how to discretize it.

3. Operator norms

We now consider the operator F(t) defined by convolution with the Gaussian (62). Using
Young’s inequality (51), the operator norm of F(t) : Lq → Ls for any 1 ≤ q ≤ s is bounded by the
Lp norm of the kernel of F(t) with p = (1 + 1/s − 1/q)− 1. We can compute directly via (55) the
Lp norm of the kernel (62) as

‖F(t)‖p =
(

exp
(−et + t

)
−μ

)1/N ( −μ

2πet

)3/2 (−μp

2πet

)−3/(2p)

. (63)

Since this is finite for all 1 ≤ p, we conclude that F(t) : Lq → Ls is bounded for any 1 ≤ q ≤ s.
Equivalently, f ∈ Lq implies F(t) f ∈ L [q,∞]. We now consider how to bound F(t) : Lq → Ls

∇ for 1
≤ q ≤ s. Using (52) and Young’s inequality (51), our bound is the Lp norm of the kernel of ∇F(t)
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with p = (1 + 1/s − 1/q)− 1. We can compute using (57) that

‖∇F(t)‖p =
(

exp
(−et + t

)
−μ

)1/N ( −μ

2πet

)3/2 (−μ

2et

)−(p+1)/(2p)

2

(
�

(
p + 3

2

)
2πp−(p+3)/2

)1/p

.

(64)

Since this is finite for all 1 ≤ p, we conclude that F(t) : Lq → Ls
∇ is bounded for any 1 ≤ q ≤ s and

thus f ∈ Lq implies F(t) f ∈ L [q,∞]
∇ .

The bounds (63) and (64) indicate the function spaces in which the results live, but do not
provide an understanding of the sizes of the results. We now analyze the expected sizes. Our
analysis is based on expected scalings, and so provides understanding and estimates, but not rigorous
bounds. As described in Sec. I A, F(t) is used when we replace �̃ with F(t)�̃ and then again
applied at the end of (21), where it appears along with a scalar as |E(t)|F(t). The matrix E(t) is
constructed from the matrix L(t) = L(F(t)�̃,�), which has entries of the form 〈F(t)φ̃, φ〉 and thus
satisfy |〈F(t)φ̃, φ〉| ≤ ‖F(t)φ̃‖2‖φ‖2 ≤ ‖F(t)‖1‖φ̃‖2‖φ‖2. The scaling is thus |L(t)| ∼ ‖F(t)‖N

1
and since E(t) is formed by replacing one row of L(t) with an orthonormal vector, its scaling is
|E(t)| ∼ ‖F(t)‖N−1

1 . Using ‖F(t)‖1 = (exp ( − et + t)/( −μ))1/N from (63), we can incorporate this
scaling and obtain the estimates

‖|E(t)|F(t)‖p ∼‖F(t)‖N−1
1 ‖F(t)‖p = [(63) with N = 1] and (65)

‖∇|E(t)|F(t)‖p ∼‖F(t)‖N−1
1 ‖∇F(t)‖p = [(64) with N = 1]. (66)

These estimates have removed the dependence on N, but leave a dependence on t. To remove
this dependence, we integrate over t and apply (56) to obtain∫ ∞

−∞
‖|E(t)|F(t)‖p dt ∼

(
1

−μ

)(−μ

2π

)3/2 (−μp

2π

)−3/(2p)

�

(
3 − p

2p

)
for 1 ≤ p < 3 and

(67)

∫ ∞

−∞
‖∇|E(t)|F(t)‖p dt ∼

(
2

−μ

)1/(2p)

π−3/2

(
�

(
p + 3

2

)
2πp−(p+3)/2

)1/p

�

(
1

2p

)
. (68)

It does not quite make sense to integrate these operator norms in this way, since the functions that
|E(t)|F(t) are applied to also depend on t. Nonetheless, to understand the sizes of objects that we
encounter, we will lump all these operators together into a single F and use (67) and (68) as its
bounds. Due to the restriction p < 3 in (67), the operator norm of F : Lq → Ls is only finite when p
= (1 + 1/s − 1/q)− 1 < 3 ⇒ q ≥ 3s/(3 + 2s). If 3/2 ≤ q, then this imposes no additional restriction
on s and we have f ∈ Lq implies F f ∈ L [q,∞]; however, q < 3/2 ⇒ s < 3q/(3 − 2q) so we only
have F f ∈ L [q,3q/(3−2q)).

4. Ensuring accuracy in the Green function

We now consider how to discretize (61) to obtain a sufficiently accurate approximation for Gμ

as a sum of separable convolutions with Gaussians. We require L∞ relative error for Ĝμ in (58)
bounded by ε. By the isometry of the Fourier transform this gives relative error bounded by ε for
Gμ : L2(R3N ) → L2(R3N ), which is sufficient to run the Green function iteration in Sec. I A and all
that we required in Ref. 3.

The analysis in Sec. II C 3 showed that accuracy requirements for F : Lq → Ls correspond to
accuracy requirements for Gμ: Lq → Ls for N = 1. Our requirement above for L∞ relative error for
Ĝμ thus provides relative error control for F : L2 → L2. Anticipating our later needs, we will also
require L2 relative error for Ĝμ for N = 1 bounded by ε. By the isometry of the Fourier transform
and Young’s inequality (51), this provides error control F : Lq → Ls for 1/q = 1/s + 1/2. Since
we normalize by the L2 norm of the kernel rather that the operator norm of Gμ (which we cannot
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compute) and Young’s inequality may not be sharp, this does not quite provide relative error in
operator norm but should only be off by a small constant.

Following Ref. 13, we will truncate the domain of integration in (59) to [ − A, B] with − A < 0
< B and there approximate the integral with the trapezoid rule with step size h. To achieve pointwise
relative error in (59) bounded by ε, the proof of Theorem 3 in Ref. 13 shows it is sufficient to set

h <
2πθ

ln(1 + 2/(ε cos θ ))
(69)

for any 0 < θ < π /2. In order to get a simple expression, they then select θ = 1 and bound the
denominator from above. There does not appear to be a closed formula for the θ that maximizes (69)
for a given ε, but it is simple to numerically maximize this function, so that is what we will do. We
observe that θ → (π /2)− as ε → 0+ . Since (60) is obtained from (59) by substitution, we therefore
also obtain pointwise relative error bounded by ε in (60) and thus L∞ and L2 relative error for Ĝμ

bounded by ε.
Truncating the infinite integral (59) to an integral on the interval [ − A, B] has three effects on

the accuracy of the approximation. First, neglecting (B, ∞) means the approximation will go to a
finite limit as z → 0+ and thus for small z the pointwise error will also go to z− 1. Second, neglecting
( − ∞, − A) means the approximation will go to zero much faster than z− 1 for large z, and thus for
large z the pointwise error will go to z− 1. Third, neglecting these intervals will cause some pointwise
relative error for intermediate z.

The pointwise relative error in (59) from neglecting 0 < B < s < ∞ is bounded by

z
∫ ∞

B
exp

(−zet + t
)

dt = z
∫ ∞

exp(B)
e−zs ds = exp(−zeB), (70)

so to make it at most ε we need B > ln ( − ln (ε)/z). Since we will substitute z = (2π2‖z‖2 − μ)/
( − μ) ≥ 1, it suffices to take B > ln ( − ln (ε)).

The pointwise relative error in (59) from neglecting − ∞ < s < − A < 0 is given by

z
∫ −A

−∞
exp

(−zet + t
)

dt = z
∫ exp(−A)

0
e−zs ds = 1 − exp(−ze−A), (71)

so to make it at most ε we need A > − ln ( − ln (1 − ε)/z) ≈ − ln (ε/z). If we fix some Z > 0 and
choose A = − ln ( − ln (1 − ε)/Z), then our approximation has pointwise relative error at most ε for
0 < z < Z and this propagates to pointwise and normwise relative error for Ĝμ. Since the integrand
in (59) is positive, the pointwise (not relative) error for Z < z is bounded by 1/z. The pointwise error
in Ĝμ(z) via (60) for Z < z = (2π2‖z‖2 − μ)/( − μ) is then bounded by ( − μZ)− 1. Relative to
‖Ĝμ‖∞ = (−μ)−1 this gives pointwise error at most Z− 1. Thus we can achieve relative error in L∞

for Ĝμ as long as Z > ε − 1, which means A > − ln ( − ln (1 − ε)ε) ≈ − 2ln (ε). To bound the L2

norm of the error for Z < z we explicitly compute the L2 norm of Ĝμ for Z < z when N = 1. Since
Ĝμ is radial, setting S = [( − μ)(Z − 1)/(2π2)]1/2 we have[

4π

∫ ∞

S

(
1

2π2s2 − μ

)2

s2ds

]1/2

(72)

=
[

1

2

1√
(−μ)(2π2)

− 1

π
√

(−μ)(2π2)

(
− (Z − 1)1/2

Z
+ arctan

(
(Z − 1)1/2

))]1/2

. (73)

For large arguments, Z − 1 ≈ Z and arctan(x) ≈ π/2 − x−1 so we have[
1

2

1√
(−μ)(2π2)

− 1

π
√

(−μ)(2π2)

(−Z−1/2 + (π/2 − Z−1/2)
)]1/2

=
[ √

2

π2
√

(−μ)Z

]1/2

. (74)

Dividing by ‖Gμ‖2 = π − 1/22− 3/4( − μ)− 1/4 gives relative error 2π − 1/2Z− 1/4. Thus to achieve
relative error ε we must choose Z > 24π − 2ε − 4, which means A > − ln ( − ln (1 − ε)2− 4π2ε4)
≈ − 5ln (ε) + 2ln (4/π ).
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III. OPERATION DIAGRAM ANALYSIS

A. Function space inequalities and calculations

Minkowski’s inequality states

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p for 1 ≤ p ≤ ∞. (75)

(When p = 2 this is the Schwarz inequality; it is sometimes called the triangle inequality.) As an
application of (32), for 1 ≤ s ≤ ∞ and 1/p + 1/q = 1 we have

‖ f g‖s = (〈| f |s, |g|s〉)1/s ≤ ‖| f |s‖1/s
p ‖|g|s‖1/s

q = ‖ f ‖ps‖g‖qs (76)

and in particular choosing p = ∞ ⇒ q = 1 we have

‖ f g‖s ≤ ‖ f ‖∞‖g‖s . (77)

As a second application of (32), for 1 ≤ s ≤ ∞, 0 < t < 1, 1 ≤ stp, 1 ≤ s(1 − t)q, and 1/p + 1/q
= 1 we have

‖ f ‖s = (〈| f |ts, | f |(1−t)s〉)1/s ≤ ‖| f |ts‖1/s
p ‖| f |(1−t)s‖1/s

q = ‖ f ‖t
stp‖ f ‖1−t

s(1−t)q . (78)

For a ≤ s ≤ b we can set a = stp and b = s(1 − t)q and solve to obtain

‖ f ‖s ≤
(
‖ f ‖a(b−s)

a ‖ f ‖b(s−a)
b

)1/(s(b−a))
, (79)

which in particular shows the embedding

La ∩ Lb ⊂ Ls . (80)

In d = 3 we can explicitly compute the Lp norms of the function 1/‖r‖ restricted to the inside
or outside of a sphere of radius t via∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤t

∥∥∥∥∥
p

=
(

4π

∫ t

0

1

r p
r2dr

)1/p

=
(

4π t3−p

3 − p

)1/p

for 1 ≤ p < 3 and (81)

∥∥∥∥∥ 1

‖r‖
∣∣∣∣
t<‖r‖

∥∥∥∥∥
p

=
(

4π

∫ ∞

t

1

r p
r2dr

)1/p

=
{(

4π t3−p/(p − 3)
)1/p

for 3 < p < ∞
t−1 for p = ∞

}
. (82)

For p not in the specified ranges, the norms are infinite; note that no p works for both the inside and
outside portions.

We shall several times wish to minimize a function of the form f(t) = Atp + Bt− q with A, B, p,
q, t > 0. Computing the derivative and setting equal to zero yields

t0 =
(

Bq

Ap

) 1
p+q

and (83)

f (t0) = (p + q)

(
A

q

) q
p+q

(
B

p

) p
p+q

. (84)

B. Analysis using L2

In this section, we assume only that the input functions are in L2, and demonstrate the function
space diagram (23). Although this diagram fails to provide error bounds, the analysis is enlightening.

1. Product

Using (76) with s = 1 and p = q = 2 we have

‖φθ‖1 ≤ ‖φ‖2‖θ‖2 (85)
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and thus φθ ∈ L1. If we only know that φ and θ are in L2, then no bound holds for ‖φθ‖p for 1 < p.
For example, if φ and θ both have value

√
C on a ball of volume 1/C around a nucleus and are zero

elsewhere, then ‖φ‖2 = ‖θ‖2 = 1, but ‖φθ‖p = C(p − 1)/p → ∞ as C → ∞.

2. Nuclear potential

We first show that φθ ∈ L1 provides no bound on 〈V, φθ〉, even for the case of a single nucleus
at the origin. Let φθ have value C on a ball of volume 1/C around a nucleus and zero elsewhere, so
‖φθ‖1 = 1. We can explicitly compute using (81) that

〈V, φθ〉 = C Z

∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤(3/(4πC))1/3

∥∥∥∥∥
1

= C1/3 Zπ1/332/32−1/3, (86)

which diverges as C → ∞.
Next we show that φ ∈ L2 provides no bound for ‖V φ‖p for any 1 ≤ p, even for the case of a

single nucleus at the origin. Let φ have value
√

C on a ball of volume 1/C around a nucleus and zero
elsewhere, so ‖φ‖2 = 1. We can then compute using (81) that

‖V φ‖r = C1/2 Z

∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤(3/(4πC))1/3

∥∥∥∥∥
r

= C (5r−6)/(6r ) Z41/3π1/33(3−r )/(3r )(3 − r )−1/r . (87)

If 6/5 < r, then this diverges as C → ∞ and if r < 6/5 it diverges as C → 0. For r = 6/5
the construction is a little more difficult. Let φ have value rt(4π )− 1/2 on the ball of radius (3
+ 2t)1/(3 + 2t) for some − 3/2 < t. Then

‖φ‖2 =
(

4π

∫ (3+2t)1/(3+2t)

0

r2t

4π
r2dr

)1/2

=
(

r3+2t

3 + 2t

∣∣∣∣
(3+2t)1/(3+2t)

0

)1/2

= 1 and (88)

‖V φ‖6/5 = Z

(
4π

∫ (3+2t)1/(3+2t)

0

r (6/5)t

(4π )3/5
r2−6/5dr

)5/6

= Z (4π )1/3

(
r (9/5)+(6/5)t

(9/5) + (6/5)t

∣∣∣∣
(3+2t)1/(3+2t)

0

)5/6

= Z (4π )1/3

(
(3 + 2t)3/5

(3/5)(3 + 2t)

)5/6

= Z (4π )1/3(5/3)5/6(3 + 2t)−1/3, (89)

which diverges as t → ( − 3/2)+ .

3. Poisson convolution

We first show φθ ∈ L1 provides no bound on ‖WP [φθ ]‖p for any 1 ≤ p. Let φθ have value C on
a ball of volume 1/C around a nucleus and zero elsewhere, so ‖φθ‖1 = 1. For ‖r‖ ≤ (3/(4πC))1/3/2
we have

WP [φθ ](r) ≥ C

∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤(3/(4πC))1/3/2

∥∥∥∥∥
1

= C
4π (3/(4πC))2/32−2

2
= C1/3π1/332/32−7/3, (90)

and thus

‖WP [φθ ]‖p ≥ C1/3π1/332/32−7/3 (8C)−1/p = C (p−3)/(3p)π1/332/32(9−7p)/(3p). (91)

If p < 3, then this diverges as C → 0 and if 3 < p, then this diverges as C → ∞. Now let C = 3/(4π )
so the ball has radius 1. We then have WP [φθ ](r) ≥ 1/(1 + ‖r‖), so WP [φθ ] cannot be in Lp for
any p ≤ 3. Thus we conclude WP [φθ ] cannot be in Lp for any p.
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Next we show φθ, φ̃θ̃ ∈ L1 provides no bound on
〈
φ̃θ̃ ,WP [φθ ]

〉
. Let both φθ and φ̃θ̃ have

value C on a ball of volume 1/C around a nucleus and zero elsewhere, so ‖φθ‖1 = ‖φ̃θ̃‖1 = 1. Then
by (90),

〈
φ̃θ̃ ,WP [φθ ]

〉 ≥ ∫
‖r‖≤(3/(4πC))1/3/2

CC1/3π1/332/32−7/3dr

= π4/332/32−1/3C4/3 r3

3

∣∣∣∣
(3/(4πC))1/3/2

0

= π1/332/32−4/3C1/3, (92)

which diverges as C → ∞.

C. Analysis using L[2, u] for 3 < u

In this section, we demonstrate the diagram (26) for 3 < u ≤ ∞. For ‖V φ‖s the form of the
bound changes at u = 6 but we only give the details for 3 < u ≤ 6.

1. Product

In Sec. III B 1, we showed that φθ ∈ L1 since φ and θ are in L2. Using (76) we have

‖φθ‖u/2 ≤ ‖φ‖u‖θ‖u (93)

and thus φ and θ in Lu implies φθ ∈ Lu/3. Applying (78) with stp = 1 and s(1 − t)q = u/2 and thus
t = (u − 2s)/(s(u − 2)) yields for 1 ≤ s ≤ u/2 that

‖φθ‖s ≤ ‖φθ‖(u−2s)/(s(u−2))
1 ‖φθ‖(s−1)u/(s(u−2))

u/2 (94)

and so φθ ∈ L[1, u/2].

2. Nuclear potential

Select some Cv > 0 and split V = Vnear + Vfar with

Vnear(r) =
{

V (r) if V (r) ≥ Cv

0 if V (r) < Cv

}
and Vfar(r) =

{
0 if V (r) ≥ Cv

V (r) if V (r) < Cv

}
. (95)

For a single nucleus of charge Z we have via (81) and (82),

‖Vnear‖p = Z

∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤Z/Cv

∥∥∥∥∥
p

=
(

4π Z3

(3 − p)C3−p
v

)1/p

for 1 ≤ p < 3 and (96)

‖Vfar‖p = Z

∥∥∥∥∥ 1

‖r‖
∣∣∣∣

Z/Cv<‖r‖

∥∥∥∥∥
p

=
{(

4π Z3C p−3
v /(p − 3)

)1/p
for 3 < p < ∞

Cv for p = ∞

}
. (97)

For p outside the given ranges the norms are infinite. In particular, the motivation to split V is that
no p gives finite value for both (96) and (97). Now suppose V comes from a collection of nuclei with
total charge

∑
i Zi = Ztotal. If they are at infinite distance we obtain norms ∼ (

∑
i Z3

i )1/p, whereas if
they coalesce to a single nucleus we obtain ∼(

∑
i Zi)3/p, so a single nucleus gives the largest value,

and we have the bounds

‖Vnear‖p ≤
(

4π Z3
total

(3 − p)C3−p
v

)1/p

for 1 ≤ p < 3 and (98)

‖Vfar‖p ≤
{

(4π Z3
totalC

p−3
v /(p − 3))1/p for 3 < p < ∞

Cv for p = ∞
}

. (99)
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Splitting into near and far parts and applying (32) separately with (Lp, Lp/(p − 1)) and (Lq,
Lq/(q − 1)) to the pieces, we obtain

|〈V, φθ〉| ≤ |〈Vnear, φθ〉| + |〈Vfar, φθ〉| ≤ ‖Vnear‖p‖φθ‖p/(p−1) + ‖Vfar‖q‖φθ‖q/(q−1). (100)

We now try to choose p and q to make all terms finite. Choosing the extremal values q/(q − 1) = 1
⇒ q = ∞ and p/(p − 1) = u/2 ⇒ p = u/(u − 2) and using (98) and (99), we then obtain

|〈V, φθ〉| ≤ ‖Vnear‖u/(u−2)‖φθ‖u/2 + ‖Vfar‖∞‖φθ‖1

= C (6−2u)/u
v

(
(u − 2)4π Z3

total

(2u − 6)

)(u−2)/u

‖φθ‖u/2 + Cv‖φθ‖1. (101)

Since ‖Vnear‖p is only bounded for 1 ≤ p < 3, we must have u/(u − 2) < 3 ⇒ 3 < u, which we
assumed. Using (83), the quantity (101) is minimized by choosing

Cv = Z total

(
(u − 2)4π

(2u − 6)

)1/3 ( (2u − 6)

u

)u/(3u−6) (‖φθ‖u/2

‖φθ‖1

)u/(3u−6)

(102)

and then yields the bound

|〈V, φθ〉| ≤ Z totalπ
1/33

(
2(u − 2)4

u3(u − 3)

)1/3 (
u

2(u − 3)

)(2u−6)/(3u−6)

‖φθ‖(2u−6)/(3u−6)
1 ‖φθ‖u/(3u−6)

u/2 .

(103)

Applying Minkowski’s inequality (75) and then (76) to the two pieces, we obtain

‖V φ‖s ≤ ‖Vnearφ‖s + ‖Vfarφ‖s ≤ ‖Vnear‖sp ‖φ‖sp/(p−1) + ‖Vfar‖sq ‖φ‖sq/(q−1)

≤
(

4π Z3
total

(3 − sp)C3−sp
v

)1/(sp)

‖φ‖sp/(p−1) +
{(

4π Z3
totalC

sq−3
v /(sq − 3)

)1/(sq)

Cv for q = ∞

}
‖φ‖sq/(q−1)

(104)

with the restrictions that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ s ≤ ∞, 1 ≤ sp < 3, and 3 < sq ≤ ∞. The
restrictions 1 ≤ p ≤ ∞ and 1 ≤ sp < 3 immediately restrict our consideration to 1 ≤ s < 3. The
restriction 1 ≤ sp < 3 has least effect on s when we choose p as small as possible, which means
sp/(p − 1) as large as possible, so we choose sp/(p − 1) = u ⇒ sp = us/(u − s) and we have
the restriction us/(u − s) < 3 ⇒ s < 3u/(3 + u). The restriction 3 < sq ≤ ∞ has least effect on
s when we choose q as large as possible, which means sq/(q − 1) as small as possible, which is
max {s, 2}. If s < 2, then we choose sq/(q − 1) = 2 ⇒ sq = 2s/(2 − s) and so have the restriction
3 < 2s/(2 − s) ⇒ 6/5 < s. If 2 ≤ s, then we can choose q = ∞ and use ‖φ‖s; note that u ≤ 6 ⇒ s
< 3u/(3 + u) < 2 and then this case cannot occur. Thus we obtain V φ ∈ L (6/5,3u/(3+u)) and for
u ≤ 6 the bound

‖V φ‖s ≤ C−(3u−3s−us)/(us)
v

(
4π Z3

total(u − s)

(3u − 3s − us)

) u−s
us

‖φ‖u + C (5s−6)/(2s)
v

(
4π Z3

total(2 − s)

(5s − 6)

) 2−s
2s

‖φ‖2.

(105)

Using (83), the quantity (105) is minimized by choosing

Cv = 22/3π1/3 Z total

(
u − s

3u − 3s − us

) 2(u−s)
3s(u−2)

(
2 − s

5s − 6

)− u(2−s)
3s(u−2)

(
2(3u − 3s − us)

u(5s − 6)

) 2u
3u−6

(‖φ‖u

‖φ‖2

) 2u
3u−6

(106)

and then yields the bound

‖V φ‖s ≤ Z total3s(u−2)

(3u−3s−us)

(
π (2−s)

2(5s−6)

)1/3 ( (u−s)(5s−6)

(2−s)(3u−3s−us)

) (u−s)(5s−6)
3s2(u−2)

(
2(3u−3s−us)

u(5s − 6)

) u(5s−6)
3s(u−2)

× ‖φ‖2(3u−3s−us)/(3s(u−2))
2 ‖φ‖u(5s−6)/(3s(u−2))

u . (107)
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3. Poisson convolution

We split WP [·] at some radius Cw into

WP [ f ]near = 1

‖r‖
∣∣∣∣
‖r‖≤Cw

∗ f and WP [ f ]far = 1

‖r‖
∣∣∣∣
Cw<‖r‖

∗ f (108)

and read the Lp norms of the kernels from (81) and (82) as∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤Cw

∥∥∥∥∥
p

=
(

4πC3−p
w

3 − p

)1/p

for 1 ≤ p < 3 and (109)

∥∥∥∥∥ 1

‖r‖
∣∣∣∣
Cw<‖r‖

∥∥∥∥∥
p

=
{(

4πC3−p
w

p−3

)1/p
for 3 < p < ∞

C−1
w for p = ∞

}
. (110)

The fact that no single p gives a finite result for both parts of the kernel is the motivation for splitting
the kernel.

Using Minkowski’s inequality (75) and then Young’s inequality (51) on each piece, we obtain

‖WP [φθ ]‖s ≤ ∥∥WP [φθ ]near

∥∥
s + ∥∥WP [φθ ]far

∥∥
s

≤
∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤Cw

∥∥∥∥∥
p

‖φθ‖sp/(sp+p−s) +
∥∥∥∥∥ 1

‖r‖
∣∣∣∣
Cw<‖r‖

∥∥∥∥∥
q

‖φθ‖sq/(sq+q−s) (111)

with the restrictions that 1 ≤ p < 3 < q ≤ ∞, 1 ≤ s ≤ ∞, 1 ≤ sp/(sp + p − s), and 1 ≤ sq/(sq
+ q − s). Since 1 ≤ sp/(sp + p − s) ⇒ p ≤ s and 1 ≤ sq/(sq + q − s) ⇒ q ≤ s, we must have
3 < s ≤ ∞ and so WP [φθ ] ∈ L (3,∞]. We choose to use the extremal values sp/(sp + p − s) = u/2
⇒ p = us/(u + us − 2s) and q/(sq + q − s) = 1 ⇒ q = s. For 3 < s < ∞ we obtain

‖WP [φθ ]‖s ≤ C (3u+2us−6s)/(us)
w

(
4π (u + us − 2s)

3u + 2us − 6s

) u+us−2s
us

‖φθ‖u/2 + C (3−s)/s
w

(
4π

s − 3

)1/s

‖φθ‖1,

(112)

which is minimized using (83) by choosing

Cw =
((

4π

s − 3

)1/s (4π (u + us − 2s)

3u + 2us − 6s

)− u+us−2s
us (s − 3)u

(3u + 2us − 6s)

)u/(3u−6) ( ‖φθ‖1

‖φθ‖u/2

)u/(3u−6)

(113)

and then yields the bound

‖WP [φθ ]‖s ≤
(

3s(u−2)

3u+2us−6s

)(
4π

s−3

)1/3 ( (s−3)(u+us−2s)

3u+2us−6s

) (u+us−2s)(s−3)
3s2(u−2)

(
3u+2us−6s

u(s−3)

) u(s−3)
3s(u−2)

× ‖φθ‖u(s−3)/(3s(u−2))
u/2 ‖φθ‖(3u+2us−6s)/(3s(u−2))

1 . (114)

For s = ∞ we obtain

‖WP [φθ ]‖∞ ≤ C2(u−3)/u
w

(
2π (u − 2)

u − 3

)(u−2)/u

‖φθ‖u/2 + C−1
w ‖φθ‖1, (115)

Cw =
(

u − 3

2π (u − 2)

)1/3 ( u

2(u − 3)

)u/(3u−6) ( ‖φθ‖1

‖φθ‖u/2

)u/(3u−6)

, and (116)

‖WP [φθ ]‖∞ ≤
(

3(u − 2)

u

)(
2π (u−2)

u−3

)1/3 ( u

2(u−3)

)2(u−3)/(3u−6)

‖φθ‖u/(3u−6)
u/2 ‖φθ‖2(u−3)/(3u−6)

1 .

(117)
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Using (76) we have

‖φ̃WP [φθ ]‖t ≤ ‖φ̃‖st/(s−t)‖WP [φθ ]‖s (118)

with the restrictions 1 ≤ t, t ≤ s, 2 ≤ st/(s − t) ≤ u, and 3 < s. For t < 2 we can solve 2 ≤ st/
(s − t) ⇒ s(2 − t) ≤ 2t and then substitute in and solve 3 < s ⇒ 3(2 − t) < 2t ⇒ 6/5 < t. For
2 ≤ t the inequality 3(2 − t) < 2t is not a restriction, but st/(s − t) ≤ u ⇒ ut ≤ s(u − t) ⇒ t ≤ u.
Thus we obtain 6/5 < t ≤ u and φ̃WP [φθ ] ∈ L (6/5,u].

Using Hölder’s inequality (32) we have∣∣〈φ̃θ̃ ,WP [φθ ]
〉∣∣ ≤ ‖φ̃θ̃‖s/(s−1) ‖WP [φθ ]‖s . (119)

Since (111) requires 3 < s ≤ ∞ we have 1 ≤ s/(s − 1) < 3/2. Since φ̃θ̃ ∈ L [1,u/2] ⊂ L [1,3/2], we
need no additional restrictions on s to assure (119) is finite.

4. Gaussian convolution

In Secs. III C 2 and III C 3, we showed that 〈V, φθ〉 and
〈
φ̃θ̃ ,WP [φθ ]

〉
are bounded, V φ ∈

L (6/5,u/(3+u)) and φ̃WP [φθ ] ∈ L (6/5,u]. To complete the operations diagram (22) we need only apply
the Gaussian convolution F . In Sec. II C 3, we showed that to obtain results in L2 ∩ Lu it is sufficient
for the argument to be in Lp for any 3u/(3 + 2u) < p ≤ 2. Since 2 < u ⇒ 3u/(3 + 2u) < u/
(3 + u), we have the required condition.

D. Analysis using H1

In this section, we assume that the input functions are in H1, and demonstrate the function space
diagram (24). Most of the results follow from the L[2, u] results in Sec. III C setting u = 6.

1. Background results

These results assume f ∈ C∞
0 (R3), but a limiting argument can be used to extend both of them

to H1.

Theorem 3.1 (Ref. 14, p. 20 with d = 3). Assume that f ∈ C∞
0 (R3), an infinitely differentiable

function with compact support. Then for 1 < p < 3 and q = 3p/(3 − p),

‖ f ‖q ≤ p − 1

3 − p

(
3 − p

3(p − 1)

)1/q ( 3

2π�(3/p)�(4 − 3/p)

)1/3

‖∇ f ‖p, (120)

where � is defined by (56).

Choosing p = 2 makes q = 6 and yields

‖ f ‖6 ≤
(

1

3

)1/6 ( 3

�(3/2)�(5/2)2π

)1/3

‖∇ f ‖2 =
(

1

3

)1/6 ( 4

π2

)1/3

‖∇ f ‖2. (121)

The following Hardy-type inequality is found in Ref. 15.

Lemma 3.2. If f ∈ C∞
0 (R3), then ∥∥∥∥ 1

‖r‖ f

∥∥∥∥
2

≤ 2‖∇ f ‖2. (122)

2. Product

In Sec. III C 1, we showed that φ, θ ∈ L2 ∩ Lu implies φθ ∈ L[1, u/2]. Applying Theorem 3.1 via
(121) we have ‖f‖6 ≤ 3− 1/641/3π − 2/3‖∇f‖2 and thus H1 ⊂ L2 ∩ L6. We then have φθ ∈ L[1, 3] and
the bound

‖φθ‖3 ≤ ‖φ‖6‖θ‖6 ≤ 3−1/342/3π−4/3‖∇φ‖2‖∇θ‖2. (123)
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3. Nuclear potential

Since H1 ⊂ L2 ∩ L6, the results in Sec. III C 2 hold using u = 6. Applying (122) and Minkowski’s
inequality (75), we obtain

‖V φ‖2 ≤ 2Z total‖∇φ‖2, (124)

and thus we have the stronger result V φ ∈ L (6/5,2]. (The bound (107) on ‖V φ‖s with u = 6 goes to
infinity as s → 2− and so is definitely not sharp for φ ∈ H1; a better bound can be obtained using
(124) and interpolation (78).)

4. Poisson convolution

Since H1 ⊂ L2 ∩ L6, the results in Sec. III C 3 hold with u = 6. We are not aware that H1 gives
any stronger result.

5. Gaussian convolution

To complete the operations diagram (22) we need only apply the Gaussian convolution F . In
Sec. II C 3, we showed that to obtain final results in H1 as claimed in (24) it suffices to have the
argument for F in Lp for some 1 ≤ p ≤ 2, which have shown to be true.

IV. CHOOSING THE FUNCTION SPACES USING THE CORE ORBITAL

In Sec. IV A, we introduce the core orbital and compute exact quantities involving it. In Sec.
IV B, we analyze how the choice of function space affects the allowed truncation radius for the various
operators. From this analysis we determine that we should choose 4 ≤ u ≤ 6 and V φ ∈ L2u/(u+2). In
Sec. IV C, we test our various bounds on the core orbital using u = 4 and u = 6. From this analysis
we determine that we should choose WP [φθ ] ∈ L4 and φ̃WP [φθ ] ∈ L2. We determine that there
are no negatives to choosing u = 4, so we recommend it.

A. The core orbital

The core orbital is

ϕ(r) =
√

Z3

π
exp (−Z‖r‖) , (125)

which is the exact solution to the Schrödinger equation with a single nucleus when N = 1. Explicitly,
we have (

−1

2
∇2 − Z

‖r‖
)

ϕ(r) = −1

2

(
− 2Z

‖r‖ + Z2

)
ϕ(r) − Z

‖r‖ϕ(r) = −1

2
Z2ϕ(r). (126)

Reading the eigenvalue from (126), we can evaluate

−μ ≈ −λ = (1/2)Z2. (127)

The primary features of ϕ to note are that it has a cusp at r = 0 and becomes more concentrated
around r = 0 as Z increases. Since it is a function on R3, we cannot plot it directly. In Figure 1, we
plot its radial part and illustrate where its Lp norm concentrates.

We can compute explicitly that

‖ϕ‖p =
(

4π
∫∞

0

(
Z3

π

)p/2

exp(−pZr )r2dr

)1/p

= (2/p)3/pπ1/p−1/2 Z3/2−3/p, (128)

‖ϕ‖2 = 1, (129)

‖ϕ2‖p = ‖ϕ‖2
2p = (1/p)3/pπ1/p−1 Z3−3/p, (130)
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FIG. 1. For Z = 1 and Z = 3, the radial part of ϕ(r) (upper left), 4π |ϕ(r)|2r2 (upper right), 4π |ϕ(r)|4r2 (lower left), and
4π |ϕ(r)|6r2 (lower right) for 0 ≤ r ≤ 2. The latter three illustrate the concentration of the L2, L4, and L6 norms, respectively.

‖ϕ2‖1 = ‖ϕ‖2
2 = 1, (131)

〈V, ϕ2〉 = 4π
∫∞

0 − Z

r

Z3

π
exp(−2Zr )r2dr = −Z2, and (132)

∥∥WP
[
ϕ2
]∥∥

∞ = 4π
∫∞

0

1

r

Z3

π
e−2Zrr2dr = Z . (133)

Using the integral identity (56) we can compute

‖V ϕ‖p = Z

(
4π

∫ ∞

0

Z3p/2

π p/2
exp(−pZr )r2−pdr

)1/p

=Z7/2−3/p41/pπ (2−p)/(2p) p1−3/p�(3 − p)1/p.

(134)

The last quantity involving WP [·] requires a bit more effort. We have

〈ϕ2,WP
[
ϕ2
]〉 =

∫ ∫
Z3

π
exp (−2Z‖r‖)

1

‖r − r′‖
Z3

π
exp

(−2Z‖r′‖) dr′dr (135)

so using the change of variables s = (Z/π )r we have

π3 Z
∫

exp (−2π‖s‖)
∫

exp
(−2π‖s′‖) 1

‖s − s′‖ds′ds

= π3 Z

〈
exp (−2π‖s‖) ,

∫
exp

(−2π‖s′‖) 1

‖s − s′‖ds′
〉
. (136)
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We have the Fourier transform formulas in three dimensions11

̂exp (−2π‖r‖)(ξ ) = 1

π2

1

(1 + ‖ξ‖2)2
and

(̂
1

‖r‖
)

(ξ ) = 1

π‖ξ‖2
. (137)

Taking Fourier transforms in s and using the fact that convolution goes to multiplication, we have

π3 Z

〈
1

π2

1

(1 + ‖ξ‖2)2
,

1

π2

1

(1 + ‖ξ‖2)2

1

π‖ξ‖2

〉

= Z

π2

∫
1

(1 + ‖ξ‖2)4

1

‖ξ‖2
dξ = 4Z

π

∫ ∞

0

1

(1 + x2)4
dx . (138)

Using the integral∫
1

(x2 + 1)n
dx = x

2(n − 1)(x2 + 1)n−1
+ 2n − 3

2(n − 1)

∫
1

(x2 + 1)n−1
dx (139)

from a standard table, we finally obtain

4Z

π

8 − 3

2(4 − 1)

6 − 3

2(3 − 1)

4 − 3

2(2 − 1)

∫ ∞

0

1

x2 + 1
dx = 5Z

π4
arctan(x)

∣∣∣∣
∞

0

= 5Z

π4

π

2
= 5

8
Z . (140)

B. Truncation near the singularities

In this section, we consider flattening the core orbital ϕ and nuclear potential V in the vicinity
of the nucleus, and the Poisson kernel and Green function around their singularities. The radius at
which we can flatten while maintaining acceptable relative error ε indicates the scale at which an
adaptive numerical method would need to refine. A larger radius means a coarser scale, and thus
less computational cost. We conjecture that the core orbital is the extreme case, so this scale would
suffice for general orbitals.

In the range 2 ≤ p ≤ 6 that we consider, the Lp norm on ϕ allows truncation at radii in the range
from ε2/5 to ε2/3. For ‖WP [φθ ]‖s the truncation radius is εus/(3u + 2us − 6s) for 3 < s ≤ ∞, which is
better for large u and small s. For u = 6 all values of s give radius at least ε1, while for u = 4 values
3 < s ≤ 6 yield at least ε1. Thus these two objects do not present difficulties.

For ‖V φ‖s the truncation radius is εus/(3u − 3s − us) for 6/5 < s < 3u/(3 + u), which is better
for small s and large u. The truncation radius for F , which depends on the s chosen for ‖V φ‖s , is
εus/(2us + 3s − 3u), which is better for large s and small u. Thus V φ and F compete with each other.
The product of these truncation radii is at most ε4 independent of u, which is achieved by selecting
s = 2u/(u + 2) and results in both individual radii ε2 independent of u. Therefore, we recommend
choosing s = 2u/(u + 2).

For |〈V, φθ〉| the truncation radius is εu/(2u − 6), which is better for large u. Choosing u = 6
yields ε1 and u = 4 yields ε2. Thus this is the only term that is significantly worse for u = 4 than
for u = 6. However, we are already using radius ε2 for V φ so using it for |〈V, φθ〉| does not impose
much additional burden. In particular, we can compute |〈V, φθ〉| as |〈V φ, θ〉| and use the V φ that
we already computed. Choosing u < 4 would require radius smaller than ε2, so we recommend
choosing 4 ≤ u ≤ 6.

1. Flattening the core orbital

Consider the flattened core orbital

ϕ̃(r) =
{

Z3/2π−1/2 exp(−Zδ) for ‖r‖ ≤ δ

Z3/2π−1/2 exp (−Z‖r‖) = ϕ(r) for δ < ‖r‖ . (141)
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The error function is given on the ball of radius δ by

ϕ(‖r‖) − ϕ̃(‖r‖) = Z3/2π−1/2
(
1 − Z‖r| + O(Z2‖r‖2)) − (1 − Zδ + O(Z2δ2)

)
)

= Z5/2π−1/2(δ − ‖r‖) (1 + O(Zδ)) . (142)

We can then compute

‖ϕ − ϕ̃‖p =
(

4π

∫ δ

0

Z5p/2

π p/2
(δ − r )p (1 + O(Zδ))p r2dr

)1/p

= Z5/2

π1/2
(1 + O(Zδ))

(
4π

∫ δ

0
(δ − r )pr2dr

)1/p

= Z5/2

π1/2
(1 + O(Zδ))

(
8πδ p+3

(p + 1)(p + 2)(p + 3)

)1/p

. (143)

Compared to the exact value from (128), we have relative error

‖ϕ − ϕ̃‖p/‖ϕ‖p = (1 + O(Zδ))

(
p3

(p + 1)(p + 2)(p + 3)

)1/p

(Zδ)(p+3)/p (144)

so to obtain relative error ε we need

(Zδ)(p+3)/p ∼ ε ⇔ Zδ ∼ ε p/(p+3). (145)

For p = 2 we have Zδ ∼ ε2/5. For larger p the exponent p/(p + 3) gets larger and so the radius
εp/(p + 3) gets smaller and the condition (145) becomes more and more restrictive. For p = 6 we have
Zδ ∼ ε2/3 and as p → ∞ we have Zδ ∼ ε.

2. Truncating the nuclear potential

The potential V (r) = −Z/‖r‖ is infinite at ‖r‖ = 0, so any numerical method will have to cut
it off at some radius. We consider the modified potential

Ṽ (r) =
{−Z

δ
for ‖r‖ ≤ δ

−Z
‖r‖ = V (r) for δ < ‖r‖ , (146)

and will determine the dependence of the resulting errors on δ.
The Lp norm of the error in the kernel is∥∥∥∥∥

(
Z

‖r‖− Z

δ

)∣∣∣∣
‖r‖≤δ

∥∥∥∥∥
p

=
(

4π Z p
∫ δ

0
(r−1−δ−1)pr2dr

)1/p

=
(

4π

∫ 1

0
(t−1 − 1)pt2dt

)1/p

Zδ(3−p)/p,

(147)

so the error relative to ‖Vnear‖p from (96) is

∥∥V − Ṽ
∥∥

p / ‖Vnear‖p =
(

(3 − p)
∫ 1

0
(t−1 − 1)pt2dt

)1/p (
Cvδ

Z

)(3−p)/p

, (148)

and the scaling is (
Cvδ

Z

)(3−p)/p

∼ ε ⇔ Cvδ

Z
∼ ε p/(3−p). (149)

We note that if Cv is chosen as in (102) and the values for the core orbital from (130) inserted, then

Cvδ/Z = Zδπ2/3(u − 2)1/32(2u+4)/(3u−6)(u − 3)2/(3u−6)u−(u+6)/(3u−6), (150)

which is proportional to Zδ.
The bound on ‖Vnear‖p is used in the bounds on |〈V, φθ〉| and ‖V φ‖s . These bounds can be

considered independently and do not need to use the same truncation radius. For |〈V, φθ〉|, in (101)
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we use ‖Vnear‖u/(u−2), which results in scaling εu/(2u − 6). Thus u = 6 yields ε1, u = 5 yields ε5/4,
and u = 4 yields ε2. For ‖V φ‖s in (105) we use ‖Vnear‖us/(u−s) for 6/5 < s < 3u/(3 + u), which
results in scaling εus/(3u − 3s − us). The exponent is reduced by making s smaller and u larger. For u =
6 choosing s = 3/2 yields ε2, s = 5/4 yields ε10/9, and s → 6/5+ yields ε1. For u = 4 choosing s =
4/3 yields ε2, s = 5/4 yields ε20/13, and s → 6/5+ yields ε4/3.

3. Truncating the poisson kernel

The kernel 1/‖r‖ is infinite at ‖r‖ = 0, so any numerical method will have to cut it off. We will
modify the kernel by replacing 1/‖r‖ with 1/δ when ‖r‖ < δ.

The Lp norm of the error in the kernel can be directly computed (as in (147)) as∥∥∥∥∥
(

1

‖r‖ − 1

δ

)∣∣∣∣
‖r‖≤δ

∥∥∥∥∥
p

=
(

4π

∫ δ

0
(r−1 − δ−1)pr2dr

)1/p

=
(

4π

∫ 1

0
(t−1 − 1)pt2dt

)1/p

δ(3−p)/p,

(151)
so the error relative to ‖WP [·]near‖p from (109) is

∥∥∥∥∥
(

1

‖r‖ − 1

δ

)∣∣∣∣
‖r‖≤δ

∥∥∥∥∥
p

/ ‖WP [·]near‖p =
(

(3 − p)
∫ 1

0
(t−1 − 1)pt2dt

)1/p (
δ

Cw

)(3−p)/p

, (152)

and the scaling is

(
δ

Cw

)(3−p)/p

∼ ε ⇔ δ

Cw

∼ ε p/(3−p). (153)

We note that if Cw is chosen as in (113) and the values for the core orbital from (130) inserted, then

δ

Cw

= Zδ

π1/3

((
4π

s−3

)1/s (4π (u+us−2s)

3u+2us−6s

)−(u+us−2s)/(us) (s − 3)u

(3u + 2us − 6s)

)−u/(3u−6) (
2

u

)2/(u−2)

,

(154)

which is proportional to Zδ.
For ‖WP [φθ ]‖s , in (112) we used ‖WP [·]near‖us/(u+us−2s), which results in scaling

εus/(3u + 2us − 6s). For u = 6, choosing s = ∞ yields ε1, s = 6 yields ε2/3, s = 4 yields ε4/7, and
s → 3+ yields ε1/2. For u = 4, choosing s = ∞ yields ε2, s = 6 yields ε1, s = 4 yields ε4/5, and s
→ 3+ yields ε2/3.

4. Truncating the Green function

As we saw in Sec. II C 4, the accuracy requirements onF are equivalent to accuracy requirements
on the Green function Gμ for the N = 1 case. For N = 1, one can compute directly that the kernel of
Gμ is

1

2π

exp(−√−2μ‖r‖)

‖r‖ (155)

and using (56) that

∥∥∥∥ 1

2π

exp(−√−2μ‖r‖)

‖r‖
∥∥∥∥

p

=
(

4π

∫ ∞

0

(
1

2π

exp(−√−2μr )

r

)p

r2dr

)1/p

= 1

2π

(
4π�(3 − p)(p

√
−2μ)p−3

)1/p
. (156)
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Since the kernel (155) is infinite at ‖r‖ = 0, we modify it by replacing it by exp(−√−2μδ)/(2πδ)
when ‖r‖ < δ. For 1 ≤ p < 3, the Lp norm of the error is(

4π

∫ δ

0

(
1

2π

exp(−√−2μr )

r
− 1

2π

exp(−√−2μδ)

δ

)p

r2dr

)1/p

≤ 1

2πδ

(
4π

∫ 1

0

(
exp(−√−2μδs)

s

)p

δ3s2ds

)1/p

≤ 1

2πδ

(
4π

∫ 1

0

(
1

s

)p

δ3s2ds

)1/p

= 2−1+2/pπ−1+1/pδ−1+3/p(3 − p)−1/p. (157)

Dividing by the exact value (156) and inserting μ = − Z2/2 from (127) for the core orbital, we have
relative error

(δZ )(3−p)/p(3 − p)−1/p(�(3 − p))−1/p p(3−p)/p. (158)

Thus to have relative error less than ε we need

δZ < ε p/(3−p)(3 − p)1/(3−p) p−1�(3 − p))1/(3−p) so δZ ∼ ε p/(3−p), (159)

which is better for smaller p.
The operator F is used in several places and will use several different p. The largest p

occurs in the sequence of operations φ → V φ → FV φ with spaces L[2, u] → Ls → L[2, u]. In
Sec. IV B 2, we saw that ‖V φ‖s allows truncation of the singularity scaling as δZ ∼ εus/(3u − 3s − us).
For the map F : Ls → Lu we have p = us/(us + s − u) so (159) becomes

δZ ∼ εus/(2us+3s−3u). (160)

We thus see that the choices of u and s affect the scaling of two different objects. Consider the
product of these two truncation scalings, which yields exponent

u2s2

(3u − 3s − us)(2us + 3s − 3u)
. (161)

Explicitly minimizing this function, we find it has a minimum along the line

us + 2s − 2u = 0 ⇔ s = 2u

u + 2
, (162)

and there has value 4, independent of u. Inserting the optimal relationship (162) into the two
truncation scalings, we find both reduce to ε2, independent of u.

C. Comparison of bounds

In this section, we test our bounds from Sec. III using the core orbital. Our goal is to determine
the efficiency of the bounds to help us decide on which spaces to use for the intermediate steps.

In Sec. IV B, we concluded that one should use L2 ∩ Lu with 4 ≤ u ≤ 6 for the inputs. For
φθ and φ̃θ̃ , using the extremal spaces L1 ∩ Lu/2 does not appear to have any disadvantages, so we
recommend it. For φ̃WP [φθ ], in Sec. IV C 3 in Figure 5 we show that using L2 gives nearly optimal
output for F φ̃WP [φθ ], so we recommend it. For WP [φθ ], in Sec. IV C 3 in Figure 6 we show that
L5 is nearly optimal, but all spaces from L4 to L∞ are comparable. In Sec. IV B 3, we showed that
the best scaling is ε1/2 as s → 3+ , but that even s = ∞ gives acceptable scaling ε. On balance we
recommend L4, which gives scaling ε4/7. For V φ, in Sec. IV B 4 we showed that the best compromise
scaling of ε2 is obtained by taking s = 2u/(u + 2) = 3/2.

None of these considerations determine which u ∈ [4, 6] we should choose. In fact, all our tests
below show that u = 4 and u = 6 give comparable results. Thus, on the general principle that weaker
function spaces are easier for a numerical method to accomplish, we recommend choosing u = 4.
These recommendations are summarized in the diagram (27).
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TABLE I. Sharpness factors for various bounds.

Exact Using Sharpness Factor

Quantity Value Bound Value Assuming L[2, 4] Assuming L[2, 6]

∣∣〈V, ϕ2
〉∣∣ (132) (103) (130) 3/2 = 1.5 2 · 31/6 ≈ 2.40

‖V ϕ‖4/3 (134) (107) (128) 23/43 − 1/4�(5/3) − 3/4 ≈ 1.38 ...
‖V ϕ‖3/2 (134) (107) (128) ... (3/2)2/3�(3/2) − 2/3 ≈ 1.42∥∥WP

[
ϕ2
]∥∥∞ (133) (117) (130) 3/2 = 1.5 223 − 5/6 ≈ 1.61

〈ϕ2,WP
[
ϕ2
]〉 (140) (119), (117) (130) 12/5 = 2.4 253 − 5/65 − 1 ≈ 2.57

1. Sharpness

An inequality is said to be sharp if equality is attained for some inputs. For an inequality of the
form A( f ) ≤ B( f ), the ratio B( f )/A( f ) is the sharpness factor for that f, and C = min f B( f )/A( f ) ≥
1 is the sharpness factor for the inequality. If C is known, then the sharp inequality A( f ) ≤ B( f )/C
could be used. If C is not known but for trial f the ratio B( f )/A( f ) is large, then one is stuck using
a potentially inefficient bound. In particular, one may need to make ‖f‖ unreasonably small in order
to be assured that A( f ) is acceptably small.

We now check some of the bounds in Sec. III by using the exact values available for the core
orbital from Sec. IV A. Due to lack of exact values, we are unable to check ‖WP [ϕ2]‖s for s < ∞,
‖ϕWP [ϕ2]‖t , or any quantities involving F . We organize the results in Table I. We find that the
sharpness factors are all less than 3.

2. Intermediate objects

In this section, we discuss our bounds for ‖WP [ϕ2]‖s with s < ∞ and ‖ϕWP [ϕ2]‖t , for which
we have no exact formulas, and for |〈ϕ2,WP [ϕ2]〉| when using ‖WP [ϕ2]‖s .

Our bound on ‖WP [φθ ]‖s is given by (114). Inserting the exact values (128) for the core orbital
and normalizing by the exact value ‖WP [ϕ2]‖∞ = Z , we obtain a bound for ‖WP

[
ϕ2
]‖s/Z as a

function of s and u. We plot the result in Figure 2 for u = 4 and u = 6. We observe that there is little
difference between u = 4 and u = 6 and that although the bound becomes untenable as s → 3+ , at
s = 3.2 the inflation is less than 4.

The value of ‖WP [φθ ]‖s is used in the bound (119) for
∣∣〈φ̃θ̃ ,WP [φθ ]

〉∣∣. Since we know the
exact value from (140), we can compute the sharpness factor as a function of u and the intermediate

4 6 8 10 12
0

1

2

3

4

5

Z=1 u=4
Z=1 u=6
Z=5 u=4
Z=5 u=6

FIG. 2. The bound on ‖WP
[
ϕ2
]‖s/Z (vertical axis) as a function of s (horizontal axis, [3.1, 13]) using the bound (114) and

assuming only ϕ ∈ L[2, u]. The bound becomes infinite at s = 3.
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3.0

u=4
u=6

FIG. 3. The sharpness bound on
∣∣〈ϕ2,WP

[
ϕ2
]〉

/(5/8Z )
∣∣ (vertical axis) as a function of the s (horizontal axis, [3.1, 23])

used for
∥∥WP

[
ϕ2
]∥∥

s , which assumes only ϕ ∈ L[2, 6]. The bounds become infinite at s = 3 and go to values less than 3 as
s → ∞.

s used. We plot the result in Figure 3. We observe that the values for 3.1 < s < ∞ are better than the
value in Table I, which used s = ∞.

Our bound on ‖φ̃WP [φθ ]‖t is given by (118) for 6/5 < t ≤ u and depends on an intermediate
parameter s, which determines which norm is used for WP [φθ ], as well as the initial u. We plot the
result for the core orbital in Figure 4. We observe that u = 4 and u = 6 give similar results and that
different values of s are needed for different values of t.

3. Minimal output size

As discussed in Sec. IV B, we recommend taking V φ ∈ L2u/(u+2). The bound on ‖FV φ‖q is
obtained by multiplying (107) with s = 2u/(u + 2) by (67) with p = 2uq/(uq + 2u − 2q). Inserting
the exact values (128) and (127) for the core orbital and normalizing by ‖ϕ‖q, we obtain a bound
for ‖FV ϕ‖q/‖ϕ‖q as a function of u. The resulting bound is independent of Z. Since we are only
interested in q = 2 and q = u, and are only testing u = 4 and u = 6, there are only four values to

1 2 3 4 5 6
4

6

8

10

12

14

16

u=4 s=3.1
u=6 s=3.1
u=4 s=5
u=6 s=5
u=4 s=1e+30
u=6 s=1e+30

FIG. 4. The bound on
∥∥ϕWP

[
ϕ2
]∥∥

t (vertical axis) as a function of t (horizontal axis) using Z = 5 and three values for s
in (118).
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1 2 3 4 5 6
1

2

3

4

5

6

u=4 s=3.1
u=6 s=3.1
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FIG. 5. The bound on Z‖FϕWP
[
ϕ2
]‖q/‖ϕ‖q (vertical axis) for q = 2 (left plot) and q = u (right plot) as a function of the

t (horizontal axis) used for ‖ϕWP
[
ϕ2
]‖t for a selection of s used for ‖WP

[
ϕ2
]‖s .

compute. For u = 4 and q = 2 we have 2.69, for u = 4 and q = 4 we have 4.85, for u = 6 and q = 2
we have 2.76, and for u = 6 and q = 6 we have 4.36.

Our bound on ‖F φ̃WP [φθ ]‖q is obtained by multiplying (67) using p = (1 + 1/q − 1/t)− 1

by (118) for some 6/5 < t ≤ u, which depends on a s, which determines which norm is used for
WP [φθ ] in (112). Assembling these together and inserting values for the core orbital, we obtain
an incomprehensible formula depending on u, s, t, and q. We do, however, note Z-dependence of
Z− 1. To study the behavior with respect to t and s, we therefore normalize by Z− 1 and consider
Z‖FϕWP [ϕ2]‖q/‖ϕ‖q . In Figure 5, we plot the bounds for q = 2 and q = u using u = 4 and u =
6. For q = 2 we observe that t = 1.5 appears optimal, but t = 2 is only slightly worse. For q = u
the optimum is near t = 2 and smaller t are significantly worse. Thus t = 2 appears to be the best
choice. We observe in both cases that the best s are around s = 5. To test this, we next fix t = 2 and
plot the bounds as a function of s in Figure 6. The optimum appears to be just less than 5.

Our other two outputs consist of F φ̃ or F ˜̃φ times a scalar. Using the L2 norm of ϕ, we can
apply (67) with p = 2q/(2 + q) to obtain the bound

‖Fϕ‖q

‖ϕ‖q
≤ Z−2�

(
6 + q

4q

)
2−(5q+6)/(4q)π (2−q)/(4q)(2 + q)3(2+q)/(4q)q (6−3q)/(4q). (163)
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2.5

3.0

3.5
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u=4 q=2
u=q=4
u=6 q=2
u=q=6

FIG. 6. The bound on Z‖FϕWP
[
ϕ2
]‖q/‖ϕ‖q (vertical axis) for q = 2 and q = u as a function of the s (horizontal axis;

[3.1, 50]) used for ‖WP
[
ϕ2
]‖s .
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FIG. 7. The bound on Z2‖Fϕ‖q/‖ϕ‖q (vertical axis) as a function of q (horizontal axis) for a selection of p used for ‖ϕ‖p.

Alternatively, we can use the Lq norm of ϕ and apply (67) with p = 1 to obtain simply 2Z− 2,
independent of q. In Figure 7, we illustrate the bounds on Z2‖Fϕ‖q/‖ϕ‖q for a selection of Lp

assumptions on ϕ. We observe that although p = 3 gives a better bound for q > 3, the bound using
p = 2 is quite similar.

V. IMPLEMENTATION AND TESTING

A. Bound collection

In this section, we collect the bounds used for our final choice of function spaces (27). These
bounds are obtained by inserting particular values into bounds obtained elsewhere in the paper.

From (85) and (93) we have

‖φθ‖1 ≤‖φ‖2‖θ‖2 and (164)

‖φθ‖2 ≤ ‖φ‖4‖θ‖4. (165)

From (103) and (107) we have

| 〈V, φθ〉 | ≤ Z total3π1/3
(‖φθ‖1‖φθ‖2

2

)1/3 ≤ 4.40 Z total
(
(164) × (165)2

)1/3
and (166)

‖V φ‖4/3 ≤ Z total3π1/3
(‖φ‖2

2‖φ‖4
)1/3 ≤ 4.40 Z total

(‖φ‖2
2‖φ‖4

)1/3
. (167)

From (114), (118), and (119) we have

‖WP [φθ ]‖4 ≤ 25/339/85−23/24π1/3
(‖φθ‖5

1‖φθ‖2
)1/6 ≤ 3.43

(
(164)5 × (165)

)1/6
, (168)

‖φ̃WP [φθ ]‖2 ≤ ‖φ̃‖4‖WP [φθ ]‖4 ≤ ‖φ̃‖4 × (168), (169)

∣∣〈φ̃θ̃ ,WP [φθ ]
〉∣∣ ≤ ‖φ̃θ̃‖4/3 ‖WP [φθ ]‖4 ≤ (‖φ̃θ̃‖1‖φ̃θ̃‖2

)1/2×(168) ≤ ((164)×(165))1/2×(168).
(170)

From (67) we obtain the operator bounds F : Lq → Ls of

Lq → Lq : ‖F‖1 ∼ (−μ)−1 , (171)
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L2 → L4 and L4/3 → L2 : ‖F‖4/3 ∼ �(5/8)2−21/839/8π−3/8(−μ)−5/8 ≤ 0.521 (−μ)−5/8, (172)

L4/3 → L4 : ‖F‖2 ∼ �(1/4)2−3/2π−3/4(−μ)−1/4 ≤ 0.544(−μ)−1/4. (173)

Assembling these together, we have

‖F φ̃‖2 ≤‖F‖1‖φ̃‖2 = (171) × ‖φ̃‖2, (174)

‖F φ̃‖4 ≤‖F‖4/3‖φ̃‖2 = (172) × ‖φ̃‖2, (175)

‖F φ̃ 〈V, φθ〉 ‖2 ≤ ‖F φ̃‖2 |〈V, φθ〉| ≤ (174) × (166), (176)

‖F φ̃ 〈V, φθ〉 ‖4 ≤ ‖F φ̃‖4 |〈V, φθ〉| ≤ (175) × (166), (177)

‖F ˜̃φ
〈
φ̃θ̃ ,WP [φθ ]

〉 ‖2 ≤ ‖F ˜̃φ‖2

∣∣〈φ̃θ̃ ,WP [φθ ]
〉∣∣ ≤ (174) × (170), (178)

‖F ˜̃φ
〈
φ̃θ̃ ,WP [φθ ]

〉 ‖4 ≤ ‖F ˜̃φ‖4

∣∣〈φ̃θ̃ ,WP [φθ ]
〉∣∣ ≤ (175) × (170), (179)

‖F φ̃WP [φθ ]‖2 ≤‖F‖1‖φ̃WP [φθ ]‖2 ≤ (171) × (169), (180)

‖F φ̃WP [φθ ]‖4 ≤‖F‖4/3‖φ̃WP [φθ ]‖2 ≤ (172) × (169), (181)

‖FV φ‖2 ≤‖F‖4/3‖V φ‖4/3 ≤ (172) × (167), and (182)

‖FV φ‖4 ≤ ‖F‖2‖V φ‖4/3 ≤ (173) × (167). (183)

B. Truncation radius collection

In this section, we gather the truncation radii from Sec. IV B given our choices of spaces in
(27). These radii are obtained by inserting particular values into the formulas.

For ϕ, we chose to use p = 2 and p = 4. Assuming O(Zδ) < 1, from (144) and (145) we have
the sufficient condition

δ < Z−1
(ε

2

)p/(p+3)
(

(p + 1)(p + 2)(p + 3)

p3

)1/(p+3)

. (184)

Inserting p = 4 yields δ < 0.797 ε4/7/Z, which is more restrictive than the p = 2 radius.
For V we chose u = 4 so from (150) we obtain

Cv = Z22−1π2/3 and Cvδ/Z = Zδ2−1π2/3. (185)

For |〈V, φθ〉| we have p = 2 in (148) and obtain (Zδ)1/22− 1/23− 1π1/3 < 0.346 (Zδ)1/2 ; thus to obtain
error less than ε, it is sufficient to have δ < 8.39 ε2/Z. For ‖V φ‖4/3 we also have p = 2 in (148) and
so obtain the same radius.

For WP [·], we chose u = 4 and s = 4, so from (154) we obtain

Cw = Z−121/33−1/25−1/6 and
δ

Cw

= Zδ2−1/331/251/6. (186)

We have p = us/(u + us − 2s) = 4/3 in (152) and obtain

(Zδ)5/42−5/123−1/8523/24

(∫ 1

0
(1 − t)4/3t2/3dt

)3/4

< (Zδ)5/4211/123−17/8523/24 < 0.855 (Zδ)5/4;

(187)
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thus to obtain error less than ε, it is sufficient to have δ < 1.16 ε4/5/Z. From the splitting (112) with
Cw from (186) we have that WP [·]far : L1 → L4 is bounded by∥∥∥∥∥ 1

‖r‖
∣∣∣∣
Cw<‖r‖

∥∥∥∥∥
4

= Z1/425/1231/851/24π1/4 < 2.19 Z1/4 (188)

and WP [·]near : L2 → L4 is bounded by∥∥∥∥∥ 1

‖r‖
∣∣∣∣
‖r‖≤Cw

∥∥∥∥∥
4/3

= Z−5/4223/1231/85−23/24π3/4 < 2.19 Z−5/4. (189)

ForF , the most strenuous operation is L4/3 → L4, which gives p = 2 in (158) yielding 21/2(δZ)1/2;
thus to obtain error less than ε, it is sufficient to have δ < (1/2)ε2/Z. To enable the construction in
Sec. II C 4 we also compute the error from truncating F for D < r for the most restrictive case p =
1. The L1 norm of the error is

4π

∫ ∞

D

1

2π

exp(−√−2μr )

r
r2dr = 2 exp(−

√
−2μD)

D(
√−2μ) + 1

(
√−2μ)2

. (190)

Dividing by the exact value (156) gives relative error exp(−√−2μD)(D(
√−2μ) + 1) and inserting

μ = − Z2/2 from (127) for the core orbital yields exp ( − ZD)(ZD + 1). We cannot get a closed
form for the D that gives relative error less than ε, but asymptotically it behaves as D ∼ − ln (ε)/Z.

C. Vector and matrix amplification

Since (22) is part of an iteration, we expect the sizes of the outputs to be similar to the sizes of
the inputs. For the core orbital ϕ, using the spaces in (27) we find the bounds

‖Fϕ〈V, ϕ2〉‖2 ≤ 3 ‖ϕ‖2 , ‖Fϕ〈V, ϕ2〉‖4 ≤ 2.70 ‖ϕ‖4, (191)

‖FV ϕ‖2 ≤ 2.70 ‖ϕ‖2 , ‖FV ϕ‖4 ≤ 4.86 ‖ϕ‖4, (192)

‖Fϕ〈ϕ2,WP
[
ϕ2]〉‖2 ≤ 2.06 ‖ϕ‖2/Z , ‖Fϕ〈ϕ2,WP

[
ϕ2
]〉‖4 ≤ 1.86 ‖ϕ‖4/Z , (193)

‖FϕWP
[
ϕ2
]‖2 ≤ 2.34 ‖ϕ‖2/Z , and ‖FϕWP

[
ϕ2
]‖4 ≤ 2.11 ‖ϕ‖4/Z , (194)

where Z is the charge of the nucleus. The factors of Z are present because (22) does not account
for linear combinations present in the construction of the functions in b in (21). In this section, we
discuss how these linear combinations amplify the expected sizes of the results of the sequences.
We expect the result of (21) to have the same size as its inputs.

The elements in � have ‖φi‖2 = 1. The functions in F�̃ do not have norm one, but their net
norm was already accounted for when we collapsed all |E j |F j to a single F in Sec. II C 3, so we can
treat them as having norm one. The functions in � were produced by a biorthogonalization process
from F�̃, but the factor |E| ≈ |L| incorporated into F compensates for the net change in norm, so
we can assume ‖θ i‖2 = 1 as well. The elements in � are orthogonal, since they were produced in
a previous iteration and the matrix A contains an orthogonal projection due to the antisymmetric
inner product. By construction, the vector d has ‖d‖2 = 1, so we thus also have ‖�*d‖2 = 1 and so
�*d acts as a single φ and does not amplify the magnitude. To collapse the remaining vector/matrix
operations, we note the size of the vectors/matrices is N. Thus the linear combination in �*�

produces a function of size at most N times the size of the component φθ .
In Table II, we organize our first estimates of the amplified sizes. We give the amplified estimate

using N and then set N = Z to represent a neutral system. The terms coming from FV ϕ and
FϕWP

[
ϕ2
]

yield final size 1 as expected, but the other terms are too large by a factor of N = Z. We
can identify the following possible causes for overestimation of the sizes:
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TABLE II. Maximum amplification of terms due to linear combinations using core orbital sizes and − μ ∼ Z2, neglecting
constants.

Single core Amplification
Terms in (21) Term Size Raw N = Z

|E|F�∗d
∫

V �∗�dγ ′ ‖Fϕ〈V, ϕ2〉‖q/‖ϕ‖q 1 N Z

|E|F(−1)�∗ ∫ V �∗d�dγ ′

|E|FV �∗d ‖FV ϕ‖q/‖ϕ‖q 1 1 1

|E|F 1
2 �∗d

∫
�∗�WP

[
�∗�

]
dγ ′ ‖Fϕ〈ϕ2,WP

[
ϕ2
]〉‖q/‖ϕ‖q Z− 1 N2Z− 1 Z

|E|F −1
2 �∗d

∫
�∗WP

[
��∗]�dγ ′

|E|F −1
2 �∗ ∫ �WP

[
�∗�

]
�∗ddγ ′

|E|F −1
2 �∗ ∫ ��∗WP

[
��∗d

]
dγ ′

|E|F�∗dWP
[
�∗�

] ‖FϕWP
[
ϕ2
]‖q/‖ϕ‖q Z− 1 NZ− 1 1

|E|F(−1)�∗WP
[
��∗d

]

1. The core orbital is more concentrated around the nucleus than general orbitals, so the core
orbital values 〈V, ϕ2〉 = −Z2 and

∥∥WP
[
ϕ2
]∥∥

∞ = Z that we used are too large for general
orbitals.

2. We did not account for the biorthogonality property 〈φi, θ j〉 = 0 for i �= j , which leads to
cancellations when integrating and thus makes functions such as WP

[
φiθ j

]
small.

In Table III, we list those objects whose amplification we believe should be modified due to the
reasons above in order to yield the expected sizes.

D. Antisymmetric inner products using the singular value decomposition (SVD)

The antisymmetric inner product formulas (7) and (8) require application of the matrix L−1 and
then multiplication by |L|. In Ref. 3, we observed that when L is singular the antisymmetric inner
products still make sense, and can be computed using the SVD. Our experience since then indicated
that formulas using the SVD are preferred even when L is non-singular, since they are accurate
even when L is ill-conditioned. The SVD construction is no more costly that the original in the
nonsingular case and allows small terms to be neglected in a controlled manner. In this section, we
give the SVD-based formulas, which should be viewed as the method to implement the inverse-based
formulas.

The singular value decomposition16 of a N × N matrix is

L =
N∑

i=1

si ui v∗
i = USV ∗, (195)

where the matrices U and V are unitary and the singular values {si} are non-negative and in
descending order. The left singular vectors {ui} form an orthonormal set, as do the right singular

TABLE III. Modified amplification of terms.

Term Maximum Modified Reason

∫
V �∗�dγ ′ NZ2 Z2 1

�∗ ∫ V �∗d�dγ ′ NZ2 Z2 1

WP
[
�∗�

]
NZ Z 1∫

�∗WP
[
��∗]�dγ ′ N2Z NZ 2 for off-diagonals in WP

[
��∗]

�∗ ∫ ��∗WP
[
��∗d

]
dγ ′ N2Z NZ 2 for

∫
� · dγ ′
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vectors {vi }. By inserting the SVD and reorganizing to cancel indeterminacies, we obtain

(7) = 〈A�̃,V�〉 =|U ||V ∗|
N !

N∑
j=1

∏
i �= j

si

∫
V (r)�∗v j u∗

j�̃dγ and (196)

(8) = 〈A�̃,W�〉 =

|U ||V ∗|
N !

N−1∑
j=1

N∑
k= j+1

∏
i �= j,k

si

∫
�∗v j u∗

j�̃WP
[
�∗vku∗

k�̃
] − �∗v j u∗

k�̃WP
[
�∗vku∗

j�̃
]
dγ. (197)

Similarly, the formula (17) requires application of D−1 and multiplication by |D|. Using now
the SVD of D, we can compute it using

(17) = A(l, l ′)(γ, γ ′) = |U ||V ∗|
N !

⎛
⎝∏

i

siδ(γ − γ ′) −
N∑

j=1

∏
i �= j

si y∗(γ )v j u∗
j w(γ ′)

⎞
⎠ . (198)

Finally, the formula (21) requires application of E−1 and multiplication by |E|. Using now the
SVD of E, we can compute it using

(21) = |U ||V ∗|
N !

F
[∏

i

si V (r)�∗d(γ )+

�(γ )∗

⎛
⎝d

N∑
j=1

∏
i �= j

siWP
[
�∗v j u∗

jF�̃
] −

N∑
j=1

v j

∏
i �= j

siWP
[
�∗du∗

jF�̃
]⎞⎠ (γ )

+ �(γ )∗

⎛
⎝d

N∑
j=1

∏
i �= j

si

∫
V (r′)�∗v j u∗

jF�̃dγ ′ −
N∑

j=1

v j

∏
i �= j

si

∫
V (r′)�∗du∗

jF�̃dγ ′

+ d
N−1∑
j=1

N∑
k= j+1

∏
i �= j,k

si

∫
�∗v j u∗

jF�̃WP
[
�∗vku∗

kF�̃
] − �∗v j u∗

kF�̃WP
[
�∗vku∗

jF�̃
]
dγ ′

−
N∑

j=1

v j

N∑
k=1,�= j

∏
i �= j,k

si

∫
�∗du∗

jF�̃WP
[
�∗vku∗

kF�̃
] − �∗du∗

kF�̃WP
[
�∗vku∗

jF�̃
]
dγ ′

⎞
⎠
⎤
⎦ .

(199)

E. Validation tests

These tests should be run for various requested accuracies and various values of Z.

1. Construct ϕ in (125), compute ‖ϕ‖2 and ‖ϕ‖4, and compare with the exact values 1 and
2− 3/4π − 1/4Z3/4 from (128).

2. From ϕ compute ϕ2, compute ‖ϕ2‖1 and ‖ϕ2‖2, and compare with the exact values 1 and
2− 3/2π − 1/2Z3/2 from (130).

3. From ϕ2, compute 〈V, ϕ2〉 and compare with the exact value − Z2 from (132).
4. From ϕ compute V ϕ, compute ‖V ϕ‖4/3, and compare with the exact value

Z5/42− 135/4π1/4�(5/3)3/4 from (134).
5. From ϕ2 compute WP

[
ϕ2
]
, compute 〈ϕ2,WP

[
ϕ2
]〉, and compare with the exact value (5/8)Z

from (140).
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6. From V ϕ, construct the single-electron Green function G−Z2/2 (see Sec. II C 4), compute
G−Z2/2V ϕ, compute ‖ϕ + G−Z2/2V ϕ‖2 and ‖ϕ + G−Z2/2V ϕ‖4, and compare with the exact
value 0. Iterate to assure accuracy does not degrade.

Tests similar to 1 and 2 can be performed on Gaussians. Tests 3 and 5 can be attempted without
using the function spaces we specified, as can a test similar to 6.
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