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CAPTURING THE INTERELECTRON CUSP USING A GEMINAL
LAYER ON AN UNCONSTRAINED SUM OF SLATER
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Abstract. Representations of the wavefunction of the multiparticle Schrödinger equation using
an unconstrained sum of Slater determinants have the potential to be very efficient, except that they
cannot capture the interelectron cusp. To remedy this shortcoming, we extend these representations
to include interelectron geminals and analyze the algorithmic implications of doing so.
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1. Introduction. We consider the time-independent, nonrelativistic,N -electron
multiparticle Schrödinger equation with the Born–Oppenheimer approximation that
the nuclei are point charges. This equation is an eigenproblem Hψ = λψ. The
eigenvalues λ correspond to energies and the smallest energies are of greatest interest.
The wavefunction ψ is a function of N variables, each of which has a three-dimensional
spatial part r = (x, y, z) and a spin variable σ ∈ {−1/2, 1/2}, which we combine as γ =
(r, σ). The wavefunction ψ is also required to be antisymmetric under the exchange of
any two γi and γj for i �= j, so that, for example, ψ(γ1, γ2, . . . ) = −ψ(γ2, γ1, . . . ). The
Hamiltonian H = T + V +W consists of kinetic, nuclear potential and interelectron
potential operators defined respectively by

T = −1

2

N∑
i=1

∇2
i ,(1.1)

V =

N∑
i=1

V (ri) , and(1.2)

W =
1

2

N∑
i=1

N∑
j �=i

1

‖ri − rj‖
.(1.3)

The differential operator ∇2 is a three-dimensional Laplacian, and the potential V (r)
is a sum of terms of the form Za/‖r− ra‖ from a nucleus of charge Za at position ra.

Explicit formulas for solutions of the multiparticle Schrödinger equation are es-
sentially limited to N = 1. Nearly a century of work on numerical approximations has
yielded great successes, but the problem remains challenging. A tremendous amount
of computer power is still spent applying current methods, and a tremendous amount
of brain power is still spent improving these methods. In very general terms, our
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analysis of the situation is as follows. Current methods impose extra constraints on
the wavefunction representation in order to make the algorithms and analysis easier.
Such an approach is quite effective for relatively low-quality solutions, which were
all that could be considered on the computers available when these methods origi-
nated. However, when one requests higher-quality solutions, these constraints cause
the wavefunction representation to be extremely inefficient and the computational
cost to explode. Many recent algorithmic improvements consist of finding the least
damaging way to truncate the representation or the best way to extrapolate and cap-
ture the effect of neglected terms. These improvements do not address the central
impediment of inefficient representation.

Consequently, our approach is to remove constraints and seek very efficient rep-
resentations for the wavefunction. Such unconstrained representations require more
complicated algorithms to compute. In [4] we presented the necessary algorithms in
the basic case, and in [35] we extended them to scale properly for large systems. In
this paper we extend the method so it can also capture the interelectron cusp by in-
cluding geminal functions that depend on the interelectron distances ‖ri−rj‖. While
we think our method has great potential, it is not mature, so at this point we can-
not make any specific claims about its efficacy. In the following narrative section we
explain the rationale behind our computational method and the motivation for the
current paper.

1.1. Motivational narrative. At minimum, our numerical approximation for
the wavefunction ψ must be an antisymmetric function of N variables. The simplest
way to construct such a function is to antisymmetrize a sum of products of functions
of one electronic variable, as in

(1.4) ψ(γ1, γ2, . . . , γN ) = A
r∑

l=1

N∏
i=1

φli(γi) ,

which could also be written as a sum of Slater determinants. Having chosen the
representation (1.4), the next question is how to compute approximate wavefunctions
of this form. The configuration interaction (CI) family of methods (see, e.g., [19]) uses
notions of reference states and excitations to preselect the functions {φli} and impose
structure on the representation. It then introduces coefficients sl, inserts (1.4) into a
variational formulation of the equation, and uses linear algebra to determine the sl to
give the best approximate wavefunction. The advantage of such a procedure is that the
computations needed to determine sl are relatively straightforward. The disadvantage
of CI is that it imposes both structural constraints and pairwise constraints (such as
orthogonality) on the {φli}. As with any optimization problem, imposing constraints
prevents one from achieving the (unconstrained) optimum. For example, suppose the
true wavefunction is

(1.5) ψ = A
N∏
i=1

θi(γi) +A
N∏
i=1

(θi(γi) + θi+N (γi)) ,

where {θj}2Nj=1 form an orthogonal set. If there are no constraints, then (1.5) is already
of the form (1.4) with r = 2. Suppose we impose the simplest orthogonality constraint,
which holds in CI: for all i, j, l, and m, the functions φli and φ

m
j are either orthogonal

or scalar multiples of one another. To put (1.5) in the form (1.4) while satisfying this
constraint, we can multiply out the second term, obtaining r = 2N terms. Although
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this is not the only way to satisfy the constraint, it captures the essential feature:
all such representations have r ≥ 2N . As this simple example shows, constraints on
{φli} could lead to representations that are “exponentially” inefficient in terms of r.
(Note that sparse grid methods (see, e.g., [8]) applied to the multiparticle Schrödinger
equation in many ways parallel CI; see [14]. The sparse grid structure also makes the
computations relatively straightforward, the analysis tractable [52, 53, 54, 56], and
the representations potentially exponentially inefficient.)

To obtain an optimal approximate wavefunction of the form (1.4), one must re-
move the constraints on {φli}. Here optimal means either the minimum error for fixed
r or the minimum r for fixed error. Since the unconstrained approach may be expo-
nentially more efficient than the constrained approach, it is potentially very powerful
and worth developing. The disadvantage of the unconstrained approach is that one
has to compute all the {φli}, and the method to do so is not at all straightforward,
mainly due to the multilinear structure. General methods for computing on functions
of many variables by using a multilinear structure were developed in [2, 3]; see also
[17, 12, 15, 16, 10]. In [4] we introduced an algorithm to produce an approximation
of the form (1.4) without any constraints on {φli}. The algorithm is based on the
iteration ψn = −Gμ(V + W)ψn−1 using the Green function Gμ = (T − μI)−1 with
μ the current energy estimate. Within the iteration, we alternately update the func-
tions {φli} for a single electron index i while fixing the functions in the other electron
indexes. To update these functions and the energy estimate we need to compute
(antisymmetric) inner products of the forms

(1.6)
〈
ψ̃, ψ

〉
,

〈
ψ̃, (V +W)ψ

〉
, and

〈
ψ̃,Gμ(V +W)ψ

〉
,

all with ψ and ψ̃ of the form (1.4). It is yet to be determined if the benefit of having
(hopefully) optimal representations outweighs the computational expense of solving
the unconstrained problem. However, even if the unconstrained approach in [4] using
(1.4) were a complete success and rendered CI obsolete, we could not declare victory
because of well-known, serious flaws in the representation (1.4).

The first flaw is that (1.4) is untenable for large systems. Consider a simple
thought experiment with K noninteracting, identical subsystems. The overall wave-
function is then the product of the wavefunctions for the subsystems, and the overall
eigenvalue is the sum of the eigenvalues of the subsystems. The wavefunction rep-
resentation should correctly obtain the sum of the eigenvalues of the subsystems, a
requirement called “size-extensivity” in [19]. (The terms “size-extensive” and “size-
consistent” are used extensively and inconsistently in the literature; see, e.g., [1].) The
CI method with a fixed level of excitation fails in this requirement (see, e.g., [19]). It
is not clear how to apply the argument from CI in the unconstrained case, but another
simple argument shows that it also is untenable for large systems: If the wavefunc-
tion for each system is of the form (1.4), then representing the overall wavefunction
also in the form (1.4) would require us to multiply out and obtain rK terms, which
grows exponentially in K. The standard approach to achieving size-extensivity is
coupled cluster (CC) (e.g., [19, 9]), which replaces (1.4) by a representation obtained
by applying the exponential of a sum of excitation operators to a reference state.
Although not as straightforward as CI, CC is well developed, which is an advantage.
The disadvantage of CC is it, like CI, imposes constraints on the component {φli} and
thus may be exponentially inefficient. We have so far been unable to construct an
unconstrained version of CC.
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Instead, we consider wavefunctions of the recursive form

(1.7) ψ = A
r∑

l=1

K∏
k=1

(
rk∑

lk=1

Nk∏
i=1

φl,ki (γi,k)

)
.

Applied to a set of noninteracting subsystems, we can take r = 1, and the representa-
tion (1.7) is then size-extensive and has computational cost growing only linearly with
K. Allowing larger r handles interacting subsystems. The representation does assume
there are identifiable subsystems and so would not be appropriate for an electron gas,
for example. Computing (1.6) with ψ and ψ̃ of the form (1.7) is a conceptual and
algorithmic challenge, but in [35] we presented the principles and algorithms to do
so. To our knowledge, the form (1.7) has not been used for the Schrödinger equation,
but related forms have been considered in multilinear algebra [38, 13].

The second flaw in (1.4) is that the interelectron cusp will cause the approximation
error to decay slowly with r and thus r to grow rapidly for increasing accuracy. Since
ψ must be continuous [23], so must T ψ + Vψ + Wψ, even though V and W have
singularities. The singularities in V are at the nuclei ra and the singularities in W
are whenever two electron coordinates coincide as ri = rj , so these two singularities
cannot cancel. When ψ is not zero for a value of ri = rj , the singularity in Wψ must
be canceled by a singularity in T ψ, which means ψ must not be twice differentiable
at that ri = rj . Kato [23] characterized the interelectron cusp for r2 → r1 by

(1.8)
∂

∂t

(
1

4πt2

∫
‖r1−r2‖=t

ψ(γ1, γ2, γ3, . . . )dω2

)∣∣∣∣∣
t=0

=
1

2
ψ(γ1, (r1, σ2), γ3, . . . ) ,

where dω2 indicates area measure on the sphere with r2 varying. (A characterization
without using the spherical average appears in [39].) When σ1 = σ2 the antisymmetry
condition forces the right-hand side of (1.8) to be zero, and there is no cusp. When
σ1 = −σ2, (1.8) says that ψ can be written locally as a differentiable function times the
linear cusp 1+(1/2)‖r1−r2‖. Approximations of such a function using representations
like (1.4) will converge slowly in r, so obtaining a highly accurate approximation would
require many terms.

The issue of the interelectron cusp has long been recognized. For two electrons, the
early (1928) work of Hylleraas [21] showed that including “R12” terms of the form
w(‖r1 − r2‖)θ(r1)θ(r2) can greatly improve the accuracy of short approximations.
The connecting function w is called a geminal (or a Jastrow function after [22]). The
condition (1.8) shows that w should satisfy w′(0) = w(0)/2 �= 0 but one has some
flexibility. For example, the “Slater-type” geminal w(t) = 1 − exp(−ct)/(2c + 1)
satisfies this conditions for any 0 < c. Such Slater-type geminals perform better
numerically than simple linear geminals and are preferred in, e.g., [48, 51, 20, 26, 45,
28, 24, 50]. On further consideration, one notices that the cusp itself occurs on a set
of measure (volume) zero, so it cannot directly affect the values of integrals, and so
it is in some sense irrelevant. What the asymptotics (1.8) tell you is that there is a
region (the “correlation hole”) around r1 = r2 where the dependence of ψ on ‖r1−r2‖
is more important than its dependence individually on r1 and r2. This realization led
to the use of geminals that do not satisfy the cusp condition but are easier to compute
with, in particular Gaussian geminals [6, 46, 33, 43, 30, 29, 41, 42, 7, 25, 47].
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For 2 < N one has to decide how the pairwise geminals are combined. The first
candidate is the multiplicative form

(1.9)

N∏
m=1

N∏
n=m+1

w(‖rm − rn‖) .

Assuming w′(0) = w(0)/2 �= 0, taking (1.9) times a differentiable function results in
a function that satisfies the cusp condition (1.8) when rm = rn for every m �= n and
all noncoinciding values of the other rk. As a consequence, encouraging theoretical
results are available [11, 55]. However, integrating (1.9) in any variable couples all
the remaining variables, so it currently appears intractable to use within the class of
methods we consider. One therefore seeks a tractable, though theoretically inferior,
form. Suppose we chose to use a Slater-type geminal w(t) = 1 − exp(−ct)/(2c+ 1).
Inserting in (1.9) and expanding, we obtain
(1.10)

N∏
m=1

N∏
n=m+1

(
1− exp(−c‖rm − rn‖)

2c+ 1

)

= 1 +

N∑
m=1

N∑
n=m+1

− exp(−c‖rm − rn‖)
2c+ 1

+
N∑

m=1

N∑
n=m+1

N∑
j=1

N∑
k=j+1

(j,k) �=(m,n) �=(k,j)

exp(−‖rm − rn‖) exp(−‖rj − rk‖)
(2c+ 1)2

+ · · · .

If all rk are far apart, then (1.9) reduces to the first term 1 in (1.10). If any two rk
are close but all others are far apart, then (1.9) reduces to the first two terms. Thus
we see that the additive form

(1.11) 1 +
1

2

∑
m �=n

w(‖rm − rn‖)

with w(0) = −1/(2c+ 1) and w′(0) = c/(2c + 1) results in a function that satisfies
the cusp condition (1.8) when rm = rn for every m �= n, but only when the other
rk are all far apart. Note that this additive form is similar in structure to the inter-
electron potential operator W in (1.3). The CI-R12 methods build upon CI (see the
review [27]) are based on the additive form (1.11). The advantage of these methods
is they are well-developed (although no longer straightforward) and the disadvantage
is that the constraints may cause exponential inefficiencies. The CC-R12 methods
(see the reviews [48, 51]) incorporate the geminals into the excitation operators in the
exponential. An expansion of the exponential includes (1.11) and additional terms
with multiple geminals such as w(‖rm − rn‖)w(‖rj − rk‖) but does not include all of
the third term in (1.10). CC-R12 inherits structure from CC and so has the advantage
of being well-developed and the disadvantage of potential exponential inefficiency. See
the text [19] for a general overview of R12 methods.

In this work we use a slight generalization of (1.11). We allow a set of different
geminals {wp}Pp=0 to be used in order to capture different length scales; they could,
for example, be exp(−ct) for different values of c. We allow the constant term to
act independently of the geminals. To unify the notation we include it by setting
w0 ≡ 1; in computations this will result in a special, but easier, case, which we
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will usually not describe. To allow dependence on the difference in spin, we denote
|γ − γ′| = (‖r − r′‖, |σ − σ′|) and consider geminals of the form w(|γ − γ′|). The
resulting wavefunction representation is

(1.12) ψ = A
P∑

p=0

⎛
⎝1

2

∑
m �=n

wp(|γm − γn|)

⎞
⎠ rp∑

l=1

N∏
i=1

φp,li (γi) .

The purpose of the current paper is to develop methods based on the unconstrained
form of (1.12), thus overcoming the second flaw in (1.4). Specifically, we present
algorithms for computing (1.6) with ψ and ψ̃ of the form (1.12). As discussed above,
the advantage of this approach is possibly much more efficient representations, and
the disadvantage is the difficulty in constructing the algorithms. We hope through
our work here to alleviate this disadvantage so that one can obtain the benefits of the
advantage.

To overcome both the first and second flaws at the same time will require merging
(1.7) and (1.12). While we see no obstruction to doing so, it will be algorithmically
challenging, and we do not attempt to do so here. Left unresolved are the possibility of
doing an unconstrained version of CC and/or including geminal layers of multiplicative
form. Based on experience with the Schrödinger equation, there are likely further flaws
to be overcome.

It is worth noting at this point some other differences in the approach we are de-
veloping versus traditional approaches. First, a great deal of the conceptual structure
of traditional approaches does not exist within our framework. Specifically, there is
no Fock operator, reference state, excitation, active space, virtual space, quantization,
level of theory, level of perturbation, hierarchy of models, projection operator, etc.
Second, the approximations within our methods occur at specific places. The first
approximation is a decomposition of the Green function Gμ; as shown in [4], very
accurate and efficient approximations are available. The second approximation (of a
sort) is in the choice of grouping of variables in (1.7) and choice of geminals in (1.12).
We expect these choices to be made either empirically or adaptively. The third and
main approximation is in the choice of r in (1.4), rk in (1.7), and rp in (1.12). Our
essential assumption is that good approximations may be obtained with small values
of these r. At the level presented here and in [4, 35], the remainder of the method is
exact. There are of course approximations in the manipulations of {φli} and computa-
tions of integrals, but these are decoupled from the multivariate problem and deferred
to a numerical method on one or two electronic variables.

1.2. Main algorithmic analysis. In section 2 we generalize the method in [4]
to compute the inner products (1.6) using the wavefunction representation (1.12).
We consider the inner product 〈ψ̃, (V + W)ψ〉 in detail and then simplify to 〈ψ̃, ψ〉
and extend to 〈ψ̃,Gμ(V +W)ψ〉. The basic method is to use linear algebra to reduce
from formulas with N ×N Slater determinants to formulas with Slater determinants
of size given by the number of variables involved in the geminals and potentials.
With a geminal in ψ̃, another in ψ, and the geminal-like structure in W , at most
six variables are involved. These variables may coincide in various ways, so we have
a set of formulas with two to six variables. We represent the central structures in
these formulas graphically, using � to represent a variable such as γ1 and � �

to represent a geminal such as w(|γ1 − γ2|) connecting two variables. The geminals
in the inner product 〈ψ̃,Wψ〉 result in formulas corresponding to the eight overlap

structures � � � � � �, � � � � �, � � � � , � � � �, � �
�

�, � � �,
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Table 1.1

Heuristically minimal total operations sorted by complexity. The entry gives the number of
operations of the complexity given by the product of the row and column headings.

1 M M∗ M2 MM∗
1 104 28 6 3
N 411 241 3
N2 181 184 44 2 1
N3 124 8
N4 122 65 3
N5 6
N6 6

����� �
�

, and � � . For example, � � �corresponds to formulas with geminals
configured like w1(|γ1 − γ2|)w2(|γ1 − γ2|)w3(|γ2 − γ3|). Similarly, 〈ψ̃,Vψ〉 results in
seven distinct structures. To compute these formulas, one needs to expand out the
determinants. After combining equivalent terms, we obtain 584 terms to compute.
Since generating so many terms by hand would be tedious and error prone, we present
an algorithm to generate them.

The cost to compute each of these terms depends on three parameters, the first
of which is the number of electrons N . The second parameter, which we denote M ,
is the cost to represent, add, multiply, or integrate a function of γ. If a nonadaptive
method is used for the functions of γ, then M would be the number of basis functions
or grid points. The third parameter, which we denote M∗, is the cost to perform
a convolution such as g(γ0) =

∫
w1(|γ0 − γ1|)f(γ1)dγ1. Since convolution costs at

least one integration total and at most one integration per output value, we have
M < M∗ < M2. If M represents the number of points on an equispaced grid, then
M∗ = O(M logM) using the fast Fourier transform. For our analysis we will assume
N �M , so that we prefer even a high power of N to a factor of M .

In section 3 we determine how to actually compute these 584 terms and the cost to
do so. The formulas each include two to six integrals over space and the same number
of sums over the electrons. Brute-force summation and integration would thus lead
to cost O(N6M6). Instead, we choose the order of summation and integration to
involve few indexes and variables at a time and thus to minimize the cost. To handle
all these terms we develop an algorithm for reducing cases to simpler cases and then
handle a few residual cases individually. This procedure indicates that we need 5516
summations and integrations of various complexities. Many of these operations are
duplicates, however, so we can cache and reuse them. Heuristically optimizing such
reuse, we obtain the operations counts in Table 1.1. The scaling with N of N6 is
misleading because following our assumption N � M we chose to include N6 and
N5 computations rather than additional N4M∗ computations. The overall dominant
computation is N2MM∗. The computations with complexity including M2 or MM∗

all come from the cyclic overlap structure ����� �
�

, which does not allow one to integrate
in any variable without involving both other variables. Thus although some terms
cannot occur for N < 6, the dominant terms are already present by N = 3.

1.3. Is it worthwhile? The goal in replacing the representation (1.4) by (1.12)
is to allow a more efficient computation of the wavefunction. Since computing with
(1.12) is more expensive, we should consider whether this replacement is worthwhile.
For each inner product, both (1.4) and (1.12) share an initialization cost of 2N2M +
O(N3). The main cost for (1.4) is N2M∗ +M∗ +N2M + 2NM + 2M +N and that
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for (1.12) is given in Table 1.1. The number of inner products is quadratic in the
number of summands in the representation, which is r for (1.4) and R =

∑
p rp for

(1.12). Using the dominant cost for the two methods, (1.12) is worthwhile only if

(1.13) R2N2MM∗ < r2N2M∗ ↔ R < r/
√
M .

A construction from [2, 3] allows us to convert a representation (1.12) to (1.4)
and thus relate r to R. Suppose we have approximations

(1.14) wp(|γ − γ′|) ≈
Q∑

q=1

uqp(γ)u
q
p(γ

′)

that are sufficiently accurate on the region of space where the wavefunction is signif-
icant. Noting that

(1.15)
d2

dt2

(
N∏
i=1

(1 + tuqp(γi))

)∣∣∣∣∣
t=0

= 2
∑
m �=n

uqp(γm)uqp(γn) ,

we can use a finite difference with h sufficiently small to obtain the approximation

(1.16)
1

4h2

Q∑
q=1

(
N∏
i=1

(1 + huqp(γi))− 2 +

N∏
i=1

(1− huqp(γi))

)
≈ 1

2

∑
m �=n

wp(|γm − γn|) .

(We neglect logN factors due to loss-of-precision effects; see [2, 3].) Inserting into
(1.12) and multiplying out yields a (potentially suboptimal) representation of the form
(1.4) with r = (2Q+ 1)R. Inserting into (1.13), this means the representation (1.12)
is worthwhile only if

√
M < 2Q+ 1.

We have not answered the question, but we have learned that the answer does not
explicitly depend on N . We have also learned that the answer depends on how well
the geminal separates in (1.14). For highly localized geminals, Q → M and (1.12) is
worthwhile. However, delocalized geminals have Q→ 1 and are not worth using.

In section 4.1 we consider further implications of assuming that the geminals
(excluding w0 ≡ 1) are highly localized. We find that if the geminals are localized to
a region of volume K, then the dominant cost is reduced from N2MM∗ to K2N2M .
If K2M < N2M∗ then the cyclic structure is no longer dominant in cost. Using the
now-dominant cost 3N4M∗ from Table 1.1, using (1.12) becomes worthwhile if

(1.17) 3R2N4M∗ < r2N2M∗ ↔ R < r/(
√
3N) ↔

√
3N < 2Q+ 1 .

We thus conclude that localized geminals have the dual effects of making (1.4)
less efficient and making (1.12) faster to compute. Whether such localized geminals
are needed to represent ψ will depend on the specific problem.

1.4. Comparison with the literature. We have found that in our method
there is a profusion of terms to compute. This finding is entirely in agreement with
methods using geminals in the literature. As a sampling, [18, 32, 37, 36, 42, 25, 48, 51]
describe many cases that need to be computed and lament that there are so many.
We have also found that the cyclic case is the most difficult. Again this is consistent
with the literature. This case is specifically mentioned as difficult in [31, 32, 42, 27].

To deal with all these difficult terms, many different approximation schemes have
been developed. One set consists of simply neglecting terms that are too difficult.
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Although this method makes numerical analysts cringe, one should remember that
the goal of the practitioner is to obtain the best results for the available computational
resources, not to obtain a “correct” result for a given model. An analysis of the sizes
of the terms neglected in various methods is given in [28]. Arguments that the cyclic
case often produces small results appear in [31, 27].

A second, very common method of approximation is the resolution of the identity
(RI). In our survey of papers from 2010, RI was used in [48, 51, 20, 49, 44, 5, 45].
We consider RI in section 4.2 applied to our dominant cyclic case. This approxi-
mation reduces the dominant cost from N2MM∗ to QN2M∗, where Q is the length
of a separation like (1.14) for the identity operator (delta function). Although this
approximation is popular in the literature, we see no reason to expect Q to be much
smaller than M , and so we judge this approximation to not be useful for us. The
failure of RI for difficult cases was noted in [27].

Another technique is to restrict to Gaussian geminals and use analytic formulas
involving Gaussians whenever possible. This method is used in [6, 46, 33, 43, 30,
29, 41, 42, 7, 25, 47]. (Additionally, approximations of other geminals as a sum
of Gaussians are sometimes used.) We consider the implications of using Gaussian
geminals in section 4.3 applied to our dominant cyclic case. We find that Gaussians
allow us to reduce the costs, but only by replacing MM∗ factors by M2 factors. The
dominant cost is thus reduced from N2MM∗ to N2M2, which is still dominant.

2. Antisymmetric inner products including geminals. In this section we
derive formulas for the antisymmetric inner products (1.6) where the wavefunction
approximations are of the form (1.12). Since these inner products are linear, we can
pull out the summations over p and l and consider each term separately. We thus
consider (1.6) for

ψ = A

⎛
⎝1

2

∑
a �=b

w1(|γa − γb|)

⎞
⎠ N∏

i=1

φi(γi) and

ψ̃ = A

⎛
⎝1

2

∑
m �=n

w2(|γm − γn|)

⎞
⎠ N∏

i=1

φ̃i(γi) .

(2.1)

The operator W in (1.3) has the same structure as the geminal layer, so for notational
convenience we let w3(|γu − γv|) = 1/(‖ru − rv‖) and use u and v as the summation
indexes for W .

In section 2.1 we set some notation and review standard results on antisymmet-
ric inner products. In section 2.2 we generalize the methods of [4] that allow non-
separable elements in the inner products. In section 2.3 we derive the formulas for
〈ψ̃,Wψ〉A and in section 2.4 we derive those for 〈ψ̃,Vψ〉A. In section 2.5 we present
an algorithm for generating the results from sections 2.3 and 2.4 automatically and
an algorithm for expanding into the terms we will actually compute. In section 2.6
we show how to modify the formulas in this section to include Gμ. In section 2.7 we

state the results for the simpler case 〈ψ̃, ψ〉A.
In section 3 we will analyze the formulas for 〈ψ̃,Wψ〉A and 〈ψ̃,Vψ〉A to determine

their computational cost.

2.1. Preliminaries. Let (̄·) denote complex conjugate and (·)∗ denote conjugate
transpose. An inner product is denoted 〈·, ·〉 and includes conjugation of its second
argument.
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2.1.1. The antisymmetrizer and Löwdin’s rule. The antisymmetrizer A
(see, e.g., [40]) projects a function on its antisymmetric part, which for a separable
function results in a Slater determinant, given by

(2.2) A
N∏
i=1

φi(γi) =
1

N !

∣∣∣∣∣∣∣∣∣

φ1(γ1) φ1(γ2) · · · φ1(γN )
φ2(γ1) φ2(γ2) · · · φ2(γN )

...
...

. . .
...

φN (γ1) φN (γ2) · · · φN (γN )

∣∣∣∣∣∣∣∣∣
.

We define the antisymmetric inner product by

(2.3) 〈ψ̃, ψ〉A def
= 〈Aψ̃,Aψ〉 = 〈ψ̃,Aψ〉 = 〈Aψ̃, ψ〉 .

For separable functions, we can compute it by

(2.4)

〈
A

N∏
i=1

φ̃i(γi),
N∏
i=1

φi(γi)

〉

=

∫
· · ·

∫ N∏
i=1

φ̄i(γi)
1

N !

∣∣∣∣∣∣∣∣∣

φ̃1(γ1) φ̃1(γ2) · · · φ̃1(γN )

φ̃2(γ1) φ̃2(γ2) · · · φ̃2(γN )
...

...
. . .

...

φ̃N (γ1) φ̃N (γ2) · · · φ̃N (γN )

∣∣∣∣∣∣∣∣∣
dγ1 . . . dγN

=
1

N !

∣∣∣∣∣∣∣∣∣

〈φ̃1, φ1〉 〈φ̃1, φ2〉 · · · 〈φ̃1, φN 〉
〈φ̃2, φ1〉 〈φ̃2, φ2〉 · · · 〈φ̃2, φN 〉

...
...

. . .
...

〈φ̃N , φ1〉 〈φ̃N , φ2〉 · · · 〈φ̃N , φN 〉

∣∣∣∣∣∣∣∣∣
=

1

N !
|L|

using the matrix L with entries

(2.5) L(i, j) = 〈φ̃i, φj〉 =
∫
φ̃i(γ)φ̄j(γ)dγ =

∑
σ∈{−1/2,1/2}

∫
φ̃i(r, σ)φ̄j(r, σ)dr .

The formula (2.4) is known as Löwdin’s rule (e.g., [34, 40]).

2.2. Antisymmetric inner products with interference. To obtain formulas
for the antisymmetric inner product involving nonseparable functions, we generalize
the method in [4] for the potential operators. The main idea is to use Löwdin’s rule
(2.4) in all the variables with which the nonseparable function does not interfere,
thereby reducing to a smaller problem. Suppose g is a (nonseparable) function of Q
variables, which for simplicity we assume to be the first Q variables.

Let L be the matrix from (2.5), define the column vector Φ̃ whose entries are
the functions φ̃i, and let Θ = L

−1Φ̃ define the functions θi. (If L is singular a
pseudoinverse can be used; see [4].) Determinants satisfy the general property |A| =
|LL−1

A| = |L||L−1
A|, so by inserting the Slater determinant A

∏N
i=1 φ̃i(γi) in for |A|,

we have |L|A
∏N

i=1 θi(γi) = A
∏N

i=1 φ̃i(γi). Thus by simply including the scalar |L| we
can replace φ̃i by θi in our formulas. The advantage of {θi} is that it is biorthogonal
to {φi}, meaning that 〈θj , φi〉 = δji. This property can be verified by writing the

matrix of inner products as
∫
ΘΦ∗dγ =

∫
L
−1Φ̃Φ∗dγ = L

−1
∫
Φ̃Φ∗dγ = L

−1
L = I.
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Using the transformation of φ̃i to θi, to compute 〈
∏N

i=1 φ̃i(γi), g
∏N

i=1 φi(γi)〉A we
must evaluate
(2.6)

|L|
N !

∫
· · ·

∫
ḡ(γ1, . . . , γQ)

N∏
i=1

φ̄i(γi)

∣∣∣∣∣∣∣∣∣

θ1(γ1) θ1(γ2) · · · θ1(γN )
θ2(γ1) θ2(γ2) · · · θ2(γN )

...
...

. . .
...

θN (γ1) θN(γ2) · · · θN (γN )

∣∣∣∣∣∣∣∣∣
dγ1 . . . dγN .

For i > Q we can move φ̄i(γi) onto column i in the determinant and integrate. Since
〈θj , φi〉 = δji the only nonzero entry in column i is a one in row i, so the determinant
collapses and we obtain

(2.7)
|L|
N !

∫
· · ·

∫
ḡ(γ1, . . . , γQ)

Q∏
i=1

φ̄i(γi)

∣∣∣∣∣∣∣
θ1(γ1) · · · θ1(γQ)

...
. . .

...
θQ(γ1) · · · θQ(γQ)

∣∣∣∣∣∣∣ dγ1 . . . dγQ .

From this point, the method will depend on g. As an illustration, let us consider
g = 1

2

∑
a �=b w1(|γa − γb|). Although g couples all variables, it does so only two at a

time, so we can use these methods to obtain

(2.8)

〈
N∏
i=1

φ̃i(γi),
1

2

∑
a �=b

w1(|γa − γb|)
N∏
i=1

φi(γi)

〉
A

=
1

2

∑
a �=b

〈
N∏
i=1

φ̃i(γi), w1(|γa − γb|)
N∏
i=1

φi(γi)

〉
A

=
1

2

|L|
N !

∑
a �=b

∫ ∫
w1(|γa − γb|)φ̄a(γa)φ̄b(γb)

∣∣∣∣ θa(γa) θa(γb)
θb(γa) θb(γb)

∣∣∣∣ dγadγb .
When a = b the determinant is zero, so we do not need to exclude it from the sum.
The variables γa and γb are just variables of integration, so they do not actually
depend on the indexes a and b and so we can rename them γ0 and γ1. We can then
rename a and b as j0 and j1 and obtain

(2.9)
1

2

|L|
N !

∑
j0,j1

∫ ∫
w1(|γ0 − γ1|)φ̄a(γ0)φ̄b(γ1)

∣∣∣∣ θj0(γ0) θj0(γ1)
θj1(γ0) θj1(γ1)

∣∣∣∣ dγ0dγ1 .
To actually compute this formula we would expand the determinant and for each term
choose some order in which to integrate and sum.

2.3. Antisymmetric inner product including W. To compute 〈ψ̃,Wψ〉A
with ψ and ψ̃ in (2.1), we first follow section 2.2 to convert φ̃i to θi. Then, as in the ex-
ample in section 2.2, we move the sums and scalars outside the integrals and integrate
in all the variables with which the nonseparable function g = w1(|γa − γb|)w̄2(|γm −
γn|)w3(|γu − γv|) does not interfere, i.e., all variables except {γa, γb, γm, γn, γu, γv}.
If a, b,m, n, u, v are all distinct, then so are the six variables {γa, γb, γm, γn, γu, γv}
and we can rename them γ0, . . . , γ5. Renaming the indexes as j0, . . . , j5 we obtain the



CAPTURING THE INTER-ELECTRON CUSP 1753

formula

(2.10)
1

8

|L|
N !

∑
j0,j1,j2,j3,j4,j5

∫ ∫ ∫ ∫ ∫ ∫

w̄1(|γ0 − γ1|)w2(|γ2 − γ3|)w̄3(|γ4 − γ5|)φ̄j0 (γ0)φ̄j1(γ1)φ̄j2 (γ2)φ̄j3 (γ3)φ̄j4 (γ4)φ̄j5 (γ5)∣∣∣∣∣∣∣∣∣∣∣∣

θj0(γ0) θj0(γ1) θj0(γ2) θj0(γ3) θj0(γ4) θj0(γ5)
θj1(γ0) θj1(γ1) θj1(γ2) θj1(γ3) θj1(γ4) θj1(γ5)
θj2(γ0) θj2(γ1) θj2(γ2) θj2(γ3) θj2(γ4) θj2(γ5)
θj3(γ0) θj3(γ1) θj3(γ2) θj3(γ3) θj3(γ4) θj3(γ5)
θj4(γ0) θj4(γ1) θj4(γ2) θj4(γ3) θj4(γ4) θj4(γ5)
θj5(γ0) θj5(γ1) θj5(γ2) θj5(γ3) θj5(γ4) θj5(γ5)

∣∣∣∣∣∣∣∣∣∣∣∣
dγ0dγ1dγ2dγ3dγ4dγ5 .

We represent (2.10) by the graph � � � � � �with each � representing a variable
and � �representing a geminal connection like w1(|γ0 − γ1|). When a, b,m, n, u, v
are not all distinct, then the determinant in (2.10) evaluates to zero. That is correct
when a = b, m = n, or u = v but is incorrect when other indexes coincide. For these
cases we follow section 2.2 again, but fewer than six variables remain. We now work
out the different ways this can occur and the resulting formulas. To obtain 〈ψ̃,Wψ〉A
we add (2.10) and all these additional terms.

The only way to have five variables remaining is with the structure � � � � �.
This structure has three cases, counted by which of w1, w2, or w3 is the isolated
portion � � . Each case occurs four times, which when combined gives a scalar
factor 4. When w3 is isolated, this multiplicity comes from the ways in which a or b
equals m or n. This case, including multiplicity, contributes

(2.11)
1

2

|L|
N !

∑
j0,j1,j2,j3,j4

∫ ∫ ∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ1 − γ2|)w̄3(|γ3 − γ4|)

φ̄j0 (γ0)φ̄j1 (γ1)φ̄j2 (γ2)φ̄j3(γ3)φ̄j4 (γ4)∣∣∣∣∣∣∣∣∣∣

θj0(γ0) θj0(γ1) θj0(γ2) θj0(γ3) θj0(γ4)
θj1(γ0) θj1(γ1) θj1(γ2) θj1(γ3) θj1(γ4)
θj2(γ0) θj2(γ1) θj2(γ2) θj2(γ3) θj2(γ4)
θj3(γ0) θj3(γ1) θj3(γ2) θj3(γ3) θj3(γ4)
θj4(γ0) θj4(γ1) θj4(γ2) θj4(γ3) θj4(γ4)

∣∣∣∣∣∣∣∣∣∣
dγ0dγ1dγ2dγ3dγ4 .

Four variables can occur with the structures � � � � , � � � �, and � �
�

�,
where � �indicates that two geminals connect those two variables. There are three
cases for � � � � , counted by which of w1, w2, or w3 is the isolated portion � �.
Each case has multiplicity two; when w3 is isolated, the multiplicity comes from the
choice of whether m or n equals a. This case, including multiplicity, contributes

(2.12)
1

4

|L|
N !

∑
j0,j1,j2,j3

∫ ∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ0 − γ1|)w̄3(|γ2 − γ3|)φ̄j0 (γ0)φ̄j1(γ1)

φ̄j2 (γ2)φ̄j3 (γ3)

∣∣∣∣∣∣∣∣
θj0(γ0) θj0(γ1) θj0(γ2) θj0(γ3)
θj1(γ0) θj1(γ1) θj1(γ2) θj1(γ3)
θj2(γ0) θj2(γ1) θj2(γ2) θj2(γ3)
θj3(γ0) θj3(γ1) θj3(γ2) θj3(γ3)

∣∣∣∣∣∣∣∣
dγ0dγ1dγ2dγ3 .
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There are three cases for � � � �, counted by which of w1, w2, or w3 is the
center link. Each case has multiplicity eight; when w2 is the center link, a multiplicity
four comes from the ways in which a or b equals m or n, and another multiplicity
two comes from whether the other of m or n equals u or v. This case, including
multiplicity, contributes

(2.13)
|L|
N !

∑
j0,j1,j2,j3

∫ ∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ1 − γ2|)w̄3(|γ2 − γ3|)φ̄j0 (γ0)φ̄j1 (γ1)

φ̄j2 (γ2)φ̄j3 (γ3)

∣∣∣∣∣∣∣∣
θj0(γ0) θj0(γ1) θj0(γ2) θj0(γ3)
θj1(γ0) θj1(γ1) θj1(γ2) θj1(γ3)
θj2(γ0) θj2(γ1) θj2(γ2) θj2(γ3)
θj3(γ0) θj3(γ1) θj3(γ2) θj3(γ3)

∣∣∣∣∣∣∣∣
dγ0dγ1dγ2dγ3 .

There is only one case for � �
�

� . It has multiplicity eight, counted by the
ways in which a or b, m or n, and u or v are the center node. This case contributes

(2.14)
|L|
N !

∑
j0,j1,j2,j3

∫ ∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ1 − γ2|)w̄3(|γ1 − γ3|)φ̄j0 (γ0)φ̄j1 (γ1)

φ̄j2 (γ2)φ̄j3 (γ3)

∣∣∣∣∣∣∣∣
θj0(γ0) θj0(γ1) θj0(γ2) θj0(γ3)
θj1(γ0) θj1(γ1) θj1(γ2) θj1(γ3)
θj2(γ0) θj2(γ1) θj2(γ2) θj2(γ3)
θj3(γ0) θj3(γ1) θj3(γ2) θj3(γ3)

∣∣∣∣∣∣∣∣
dγ0dγ1dγ2dγ3 .

Three variables can occur with the structures � � �and ����� �
�

. There are three
cases for � � �, counted by which of w1, w2, or w3 sticks out by itself. Each case
has multiplicity eight; when w3 sticks out, a multiplicity two comes from whether m
or n equals a, and another multiplicity four comes from the ways in which u or v
equals a or b. This case, including multiplicity, contributes

(2.15)
|L|
N !

∑
j0,j1,j2

∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ0 − γ1|)w̄3(|γ1 − γ2|)

φ̄j0 (γ0)φ̄j1 (γ1)φ̄j2(γ2)

∣∣∣∣∣∣
θj0(γ0) θj0(γ1) θj0(γ2)
θj1(γ0) θj1(γ1) θj1(γ2)
θj2(γ0) θj2(γ1) θj2(γ2)

∣∣∣∣∣∣ dγ0dγ1dγ2 .

There is only one case for ����� �
�

. It has multiplicity eight; a multiplicity four
comes from the ways in which a or b equals m or n, and another multiplicity two
comes from whether the other of m or n equals u or v. This case contributes

(2.16)
|L|
N !

∑
j0,j1,j2

∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ1 − γ2|)w̄3(|γ0 − γ1|)

φ̄j0 (γ0)φ̄j1 (γ1)φ̄j2(γ2)

∣∣∣∣∣∣
θj0(γ0) θj0(γ1) θj0(γ2)
θj1(γ0) θj1(γ1) θj1(γ2)
θj2(γ0) θj2(γ1) θj2(γ2)

∣∣∣∣∣∣ dγ0dγ1dγ2 .
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The only way two variables can occur is with the structure � �, which has one
case with multiplicity four, coming from whether m or n equals a and whether u or
v equals a. This case, with multiplicity, contributes

(2.17)
|L|
N !

∑
j0,j1

∫ ∫
w̄1(|γ0 − γ1|)w2(|γ0 − γ1|)w̄3(|γ0 − γ1|)

φ̄j0(γ0)φ̄j1 (γ1)

∣∣∣∣ θj0(γ0) θj0(γ1)
θj1(γ0) θj1(γ1)

∣∣∣∣ dγ0dγ1 .
2.4. Antisymmetric inner product including V. To compute 〈ψ̃,Vψ〉A with

ψ and ψ̃ in (2.1), we follow the same procedure as in section 2.3. To indicate the
presence of V on a variable � we decorate it as �. When all indexes are distinct,
we have the structure � � � � �and formula

(2.18)
1

4

|L|
N !

∑
j0,j1,j2,j3,j4

∫ ∫ ∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ2 − γ3|)V (r4)φ̄j0 (γ0)φ̄j1 (γ1)φ̄j2 (γ2)

φ̄j3 (γ3)φ̄j4 (γ4)

∣∣∣∣∣∣∣∣∣∣

θj0(γ0) θj0(γ1) θj0(γ2) θj0(γ3) θj0(γ4)
θj1(γ0) θj1(γ1) θj1(γ2) θj1(γ3) θj1(γ4)
θj2(γ0) θj2(γ1) θj2(γ2) θj2(γ3) θj2(γ4)
θj3(γ0) θj3(γ1) θj3(γ2) θj3(γ3) θj3(γ4)
θj4(γ0) θj4(γ1) θj4(γ2) θj4(γ3) θj4(γ4)

∣∣∣∣∣∣∣∣∣∣
dγ0dγ1dγ2dγ3dγ4 .

Four variables can occur with the structures � � � �and � � � �. There are
two cases for � � � �, counted by whether V shares a variable with w1 or w2. Each
case has multiplicity two; when V shares a variable with w2, the multiplicity is from
whether u equals m or n. The contribution for this case is obtained from (2.12) but
replacing (1/4)w2(|γ0 − γ1|)w̄3(|γ2 − γ3|) by (1/2)w2(|γ2 − γ3|)V (r3).

There is only one case for � � � �. It has multiplicity four, from the ways in
which a or b equals m or n. This case contributes

(2.19)
|L|
N !

∑
j0,j1,j2,j3

∫ ∫ ∫ ∫
w̄1(|γ0−γ1|)w2(|γ1−γ2|)V (r3)φ̄j0 (γ0)φ̄j1 (γ1)φ̄j2(γ2)φ̄j3(γ3)

∣∣∣∣∣∣∣∣
θj0(γ0) θj0(γ1) θj0(γ2) θj0(γ3)
θj1(γ0) θj1(γ1) θj1(γ2) θj1(γ3)
θj2(γ0) θj2(γ1) θj2(γ2) θj2(γ3)
θj3(γ0) θj3(γ1) θj3(γ2) θj3(γ3)

∣∣∣∣∣∣∣∣
dγ0dγ1dγ2dγ3 .

Three variables can occur with the structures � � �, � � �, and � � �.
There is only one case for � � �but two for � � �since V can share a variable
with w1 only or with w2 only. Each of these three cases has multiplicity four from
the ways a or b equals m or n. The contribution is the same as (2.15) but replacing
w2(|γ0 − γ1|)w̄3(|γ1 − γ2|) by w2(|γ1 − γ2|) and including V (r0), V (r1), or V (r2).
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There is only one case for � � �. It has multiplicity two from whether a or b
equals m and contributes

(2.20)
1

2

|L|
N !

∑
j0,j1,j2

∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ0 − γ1|)V (r2)φ̄j0(γ0)φ̄j1 (γ1)φ̄j2 (γ2)

∣∣∣∣∣∣
θj0(γ0) θj0(γ1) θj0(γ2)
θj1(γ0) θj1(γ1) θj1(γ2)
θj2(γ0) θj2(γ1) θj2(γ2)

∣∣∣∣∣∣ dγ0dγ1dγ2 .
The only way two variables can occur is with the structure � �, which has one

case. It has multiplicity four, with two coming from whether m or n equals a and two
from whether u equals a or b. The contribution is the same as (2.17) but replacing
w2(|γ0 − γ1|)w̄3(|γ0 − γ1|) by w2(|γ0 − γ1|)V (r1).

2.5. Automatic generation and expansion of the cases. The Slater de-
terminants in the formulas in sections 2.3 and 2.4 are nonseparable functions of two
to six (three-dimensional) variables. Integrating with them directly costs up to M6,
which is prohibitively expensive. Our only choice is to expand out these determinants
so that each term is separable so a proper choice for the order of summations and
integrations allows us to use only low-dimensional functions. This expansion leads to
many more terms than one can manage by hand, so we instead produce an algorithm
to generate them.

In section 2.5.1 we present an algorithm to generate the 15 distinct structures
and 25 total cases that we derived by hand in sections 2.3 and 2.4. In section 2.5.2
we present an algorithm to expand the determinants and combine duplicate terms to
generate all the terms that we need to compute. In section 3 we study how to actually
compute them and the cost to do so.

2.5.1. Generation of basic cases. The information needed to encode the basic
cases for 〈ψ̃,Wψ〉A is the variables that each geminal couples. Thus we can capture
it by a list of three tuples as [(i, j), (m,n), (u, v)]. The geminal w̄1 always occurs as
w̄1(|γ0 − γ1|) so we encode its presence with the tuple (0, 1) in the first position. The
next index m can be a previously used index {0, 1} or the next available index 2. Its
partner n can be a previously used index {0, 1,m} or the next available index, but
it cannot be m. Thus the possibilities for (m,n) are (0, 1), (0, 2), (1, 0), (1, 2), (2, 0),
(2, 1), or (2, 3). Similarly, u can be any of {0, 1,m, n} or the next available and v can
be any of {0, 1,m, n, u} or the next available, but it cannot be u. The basic cases
for 〈ψ̃,Vψ〉A are encoded by two couples and a single as [(i, j), (m,n), (u, )]; they are
generated the same way, simply neglecting v.

Some of the cases generated in this way are equivalent and should be combined
and their multiplicity noted. To detect equivalent cases we put each case in a canonical
form and then combine duplicates. The allowed operations are to sort a tuple (since
(3, 2) and (2, 3) are equivalent) and to exchange any two numbers (since [(0, 1), (0, 2)]
and [(1, 0), (1, 2)] are equivalent). The specification for the canonical form is as follows:

• Each tuple is sorted small to large.
• If 0 ∈ {m,n} and 1 �∈ {m,n}, then exchange 0 and 1.
• If (m,n) ∈ {(0, 1), (2, 3)}, 0 ∈ {u, v}, and 1 �∈ {u, v}, then exchange 0 and 1.
• If (m,n) = (2, 3), 2 ∈ {u, v}, and 3 �∈ {u, v}, then exchange 2 and 3.

This algorithm reproduces the results of sections 2.3 and 2.4, which we summarize in
the first three columns of Tables 2.1 and 2.2.
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Table 2.1

Summary of the structures and cases from 〈ψ̃,Wψ〉A.

Base cases Expanded
Structure # Mult Symmetry group #

� � � � � � 1 1 {(012345), (012354), (013245), (013254), 120
(102345), (102354), (103245), (103254)}

� � � � � 3 4 {(01234), (01243)} 198
� � � � 3 2 {(0123), (0132), (1023), (1032)} 30
� � � � 3 8 {(0123)} 72

� �
�

� 1 8 {(0123)} 24
� � � 3 8 {(012)} 18

����� �
�

1 8 {(012)} 6

� � 1 4 {(01), (10)} 2
Total: 8 16 470

Table 2.2

Summary of the structures and cases from 〈ψ̃,Vψ〉A.

Base cases Expanded
Structure # Mult Symmetry group #

� � � � � 1 1 {(01234), (01324), (10234), (10324)} 38
� � � � 2 2 {(0123), (1023)} 28
� � � � 1 4 {(0123)} 24
� � � 1 4 {(012)} 6
� � � 2 4 {(012)} 12
� � � 1 2 {(012), (102)} 4
� � 1 4 {(01)} 2

Total: 7 9 114

2.5.2. Expansion into all terms. The entries in our Slater determinants con-
sist of the function θ with index given by its row and variable given by its column
(both counting from 0). Thus the row 0 column 2 entry is θj0(γ2). To generate terms
in the expansion, we fill a matrix of the desired size with tuples (a, b) giving that
entry’s position. We then symbolically expand the determinant by column expansion
to obtain a sum (stored as a list) of products (stored as lists) with signs. For example,
the 2× 2 determinant yields [(0, 0), (1, 1)] with sign 1 and [(0, 1), (1, 0)] with sign −1.

Some of these summands are equivalent and should be combined. Two summands
are equivalent if the symmetry group of the case contains a permutation that maps
one summand to the other. In the fourth column of Tables 2.1 and 2.2 we show the
symmetry group of each structure. In the fifth column we show the number of terms
remaining after combining equivalent terms. In total there are 584 terms to compute.

2.6. Antisymmetric inner products including Gµ. For the main iteration

in [4], we need to compute 〈ψ̃,Gμ(V + W)ψ〉A with ψ and ψ̃ in (2.1). Since Gμ is

self-adjoint, this is equal to 〈Gμψ̃, (V + W)ψ〉A, which we will compute instead. In
[4], we gave a construction that, for fixed μ and accuracy, approximates the Green
function as a sum of separable operators as

(2.21) Gμ = (T − μI)−1 ≈
L∑
l=1

N⊗
j=1

F l
j .
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The index l determines the amplitude and exponent of a Gaussian, and F l
j is the

operator that convolves with this Gaussian in the variable rj . Since the inner prod-
uct is linear, we can insert this approximation, pull out the sum, and consider the
computation for a single index l, which we can then suppress. Thus we must compute

(2.22)

〈
A

N⊗
j=1

Fjψ̃, (V +W)ψ

〉
.

We can formally write

A
N⊗
j=1

Fjψ̃ = A

⎛
⎝ d⊗

j=1

Fj

⎞
⎠
⎛
⎝1

2

∑
m �=n

w2(|γm − γn|)

⎞
⎠(

N∏
i=1

φ̃i(γi)

)
(2.23)

=

⎛
⎝1

2

∑
m �=n

FmFnw2(|γm − γn|)F−1
m F−1

n

⎞
⎠A

N∏
i=1

(
F φ̃i(γi)

)
.(2.24)

Structurally, we have an “operator geminal” and a modified separable function with
φ̂i = F φ̃i.

We can then use formulas that we have already developed, with a few modifica-
tions. The matrix L in (2.5) is computed using φ̂i instead of φ̃i, and we set Θ = L

−1Φ̂.
The portions of the operator geminal with F−1 are only applied to the functions θ;
since F−1Θ = F−1

L
−1FΦ̃ = L

−1Φ̃, F−1 can always be formally canceled and not
computed. Some care must be taken that the operators are applied to the correct
functions. For example, for (2.13) � � � �we have

(2.25)
|L|
N !

∑
j0,j1,j2,j3

∫ ∫ ∫ ∫
w̄1(|γ0 − γ1|)w̄3(|γ2 − γ3|)φ̄j0 (γ0)φ̄j1 (γ1)φ̄j2 (γ2)φ̄j3 (γ3)

F1F2

⎛
⎜⎜⎝w2(|γ1 − γ2|)

∣∣∣∣∣∣∣∣
θj0(γ0) F−1θj0(γ1) F−1θj0(γ2) θj0(γ3)
θj1(γ0) F−1θj1(γ1) F−1θj1(γ2) θj1(γ3)
θj2(γ0) F−1θj2(γ1) F−1θj2(γ2) θj2(γ3)
θj3(γ0) F−1θj3(γ1) F−1θj3(γ2) θj3(γ3)

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ dγ0dγ1dγ2dγ3 .

2.7. Plain antisymmetric inner products. The analysis of the inner product
〈ψ̃, ψ〉A is a simpler version of the analysis for 〈ψ̃,Wψ〉A, so we omit the details. In
Table 2.3 we summarize the cases that result.

Table 2.3

Summary of the structures and cases from 〈ψ̃, ψ〉A.

Base cases Expanded
Structure # Mult Symmetry group #
� � � � 1 1 {(0123),(0132),(1023),(1032)} 10
� � � 1 4 {(012)} 6
� � 1 2 {(01),(10)} 2

Total: 3 3 18
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3. Computational techniques and costs. In this section we consider how to
actually compute the 584 terms that we generated in section 2.5.2 and so compute
the inner products 〈ψ̃,Wψ〉A and 〈ψ̃,Vψ〉A. Our goals in this analysis are to provide
an algorithm for determining the best way to compute each term, assess the total
cost of all the computations, provide insight into the most costly terms, archive the
formulas so that the skeptical reader can check our claims, and avoid numbing the
reader’s mind with too many cases or too much detail.

In section 3.1 we consider one term in detail and show how to compute it and
the resulting cost. Through this example we introduce a graphical way to present the
essential structure of a term. We also demonstrate our first principle for organizing
the computation, which is to note common structures in the many terms and perform
computations that reduce the term to a simpler term. In the graphical representation
this results in the contraction of a graph to a simpler graph.

In section 3.2 we collect the principles from section 3.1 into an algorithm. Applied
to our 584 terms, this algorithm reduces the problem to 21 residual graphs. We then
introduce one additional element to our graphical representation and an additional
reduction that uses it. Incorporating this reduction into the algorithm reduces the
number of residual graphs to 14. We list the complexities of these residual graphs
here but defer to section 3.4 the somewhat tedious propositions for computing them.

Many of the component computations in various terms are identical and can be
cached and reused. In section 3.3 we study how to maximize this reuse and present
counts on the number of calculations of each complexity.

3.1. An example computation using reductions. In this section we consider
in detail how to compute one term in order to illustrate the general procedure.

We choose to take a term from (2.11), which has the graphical representation
� � � � �and is generated in section 2.5.1 by the list of tuples [(0, 1), (1, 2), (3, 4)].
We choose the term with formula

(3.1)
−1

2

|L|
N !

∑
j0,j1,j2,j3,j4

∫ ∫ ∫ ∫ ∫
w̄1(|γ0−γ1|)w2(|γ1−γ2|)w̄3(|γ3−γ4|)φ̄j0 (γ0)φ̄j1 (γ1)

φ̄j2(γ2)φ̄j3 (γ3)φ̄j4 (γ4)θj0(γ3)θj1 (γ0)θj2(γ1)θj3(γ2)θj4(γ4)dγ0dγ1dγ2dγ3dγ4 ,

which is generated in the determinant expansion in section 2.5.2 by the list of tuples
[(0, 1), (1, 2), (2, 3), (3, 0), (4, 4)] and has sign −1. To graphically represent this term
in the expansion, we use these tuples to define curves between variables and obtain
� � � � ��

. Each curve is interpreted as an index that connects the variables at its
ends. For example, (0, 1) means that θj1(γ0) is present; combining with φ̄j1 (γ1) yields
φ̄j1(γ1)θj1(γ0), which has the index j1 connecting the variables γ0 and γ1.

To compute this term we notice that the only terms involving j4 are φ̄j4(γ4) and
θj4(γ4) and these involve only the variable γ4, so we can sum over j4 with cost NM .
We then notice that the only other term involving γ4 is w̄3(|γ3 − γ4|), so we can then
integrate over γ4 with cost M∗. Thus with cost NM +M∗ we compute

(3.2) A(γ3) =

∫
w̄3(|γ3 − γ4|)

⎛
⎝∑

j4

φ̄j4(γ4)θj4(γ4)

⎞
⎠ dγ4
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and reduce (3.1) to

(3.3)
−1

2

|L|
N !

∑
j0,j1,j2,j3

∫ ∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ1 − γ2|)

φ̄j0(γ0)φ̄j1 (γ1)φ̄j2 (γ2)φ̄j3 (γ3)θj0(γ3)θj1(γ0)θj2 (γ1)θj3(γ2)A(γ3)dγ0dγ1dγ2dγ3 .

Graphically we have performed the contraction
� � � � �� �→ � � � �

. Our new
graph does not indicate the presence of A(γ3), but A(γ3) is not important structurally
since it can be combined with φ̄j3 (γ3). This contraction can be stated as a general

principle, using ��to represent the uninvolved portion of the graph.

Proposition 3.1. We can contract �� ���→ ��with cost NM +M∗.
We now notice that the only terms involving γ3 are φ̄j3(γ3), θj0(γ3), and A(γ3).

Since these involve the two indexes j0 and j3 we can integrate over γ3 with cost N2M
and obtain a scalar with the two indexes j0 and j3. We then notice that the only
other term with index j3 is θj3(γ2), so we can sum over j3 with cost N2M and obtain
a function of γ2 with index j0. Thus with cost 2N2M we compute

(3.4) Bj0(γ2) =
∑
j3

θj3(γ2)

(∫
φ̄j3(γ3)θj0(γ3)A(γ3)dγ3

)

and reduce (3.3) to

(3.5)
−1

2

|L|
N !

∑
j0,j1,j2

∫ ∫ ∫
w̄1(|γ0 − γ1|)w2(|γ1 − γ2|)

φ̄j0 (γ0)φ̄j1 (γ1)φ̄j2 (γ2)θj1(γ0)θj2(γ1)Bj0(γ2)dγ0dγ1dγ2 .

Graphically we have performed the contraction
� � � ��→ � � �

. In our new graph
Bj0(γ2) plays the role of θj0(γ2). This contraction can be stated as a general principle.

Proposition 3.2. We can contract �� � �� �→ �� ��with cost 2N2M .
Next we notice that the only terms involving γ2 are w2(|γ1 − γ2|), φ̄j2 (γ2), and

Bj0(γ2). Since these involve the indexes j0 and j2, we can integrate over γ2 with cost
N2M∗ and obtain a function of γ1 with indexes j0 and j2. We then notice that the
only other term that involves j2 is θj2(γ1) and it involves only the same variable γ1
as our new term. Thus we can sum over j2 with cost N2M and obtain a function of
γ1 with index j0. Thus with cost N2M∗ +N2M we compute

(3.6) Cj0 (γ1) =
∑
j2

θj2(γ1)

(∫
w2(|γ1 − γ2|)φ̄j2(γ2)Bj0(γ2)dγ2

)

and reduce (3.5) to

(3.7)
−1

2

|L|
N !

∑
j0,j1

∫ ∫
w̄1(|γ0 − γ1|)φ̄j0 (γ0)φ̄j1 (γ1)θj1(γ0)Cj0(γ1)dγ0dγ1 .

Graphically we have performed the contraction
� � ��→ � �. This contraction can

be stated as a general principle.
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Proposition 3.3. We can contract �� � ���→ �� ��with cost N2M∗+N2M .

We can now apply Proposition 3.3 again to contract � � �→ ��. With cost
N2M∗ +N2M we compute

(3.8) Dj0(γ0) =
∑
j1

θj1(γ0)

(∫
w̄1(|γ0 − γ1|)φ̄j1 (γ1)Cj0 (γ1)dγ1

)

and reduce (3.7) to

(3.9)
−1

2

|L|
N !

∑
j0

∫
φ̄j0 (γ0)Dj0(γ0)dγ0 .

We can then integrate over γ0 with cost NM and then sum over j0 with cost N to
complete our calculation. In total, our cost for this term is 2N2M∗ +M∗ + 4N2M +
2NM +N .

3.2. Reduction procedure and the residual terms. Based on our experience
for the example in section 3.1, our first algorithm to compute each of our 584 terms
is as follows:

1. Attempt to apply the contraction �� ���→ ��in Proposition 3.1. If it applies,
then reset to step 1; otherwise continue.

2. Attempt to apply the contraction �� � �� �→ �� ��in Proposition 3.2. If
it applies, then reset to step 1; otherwise continue.

3. Attempt to apply the contraction �� � ���→ �� ��in Proposition 3.3. If it
applies, then reset to step 1; otherwise continue.

This algorithm does not complete the computation of any term but instead reduces
each term to one of 21 irreducible cases, which are shown in the first columns of
Tables 3.1 and 3.2.

Eleven of these irreducible cases have the common element �� �� � � �� ��.
Integrating over one of these variables costs N2M∗ and yields a function of the other
variable with two indexes. Integrating over the other variable then costs N4M and
yields a scalar with four indexes. To indicate a scalar in our graphical language, we
introduce the element . We thus have the following contraction proposition.

Proposition 3.4. We can contract �� �� � � �� ���→ �� �� �� ��with
cost N4M +N2M∗.

We can then add another step to our algorithm:

4. Attempt to apply the contraction �� �� � � �� ���→ �� �� �� ��in
Proposition 3.4. If it applies, then reset to step 4; otherwise continue.

This additional step reduces 11 cases to 4, thus leaving us with 14 cases. One could
perhaps reduce to fewer cases by introducing additional contractions and graphical
elements, but it does not appear worthwhile to do so.

In Table 3.1 we list the the 10 cases that do not use this additional contraction,
their computational complexity, and the proposition in section 3.4 that demonstrates
this complexity. In Table 3.2 we list the 11 cases that do use this additional contrac-
tion, the 4 cases to which they reduce, their complexity, and the proposition used to
compute them. The listed complexities do not include the cost of any reductions used
to obtain the residual cases.
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Table 3.1

End cases without scalar element and their costs.

Graph Cost Proposition

�� O(NM) 3.5

� � ��
O(N2M∗) 3.6

����� �
�

� �
�

O(MM∗) 3.7

����� �
���

O(MM∗ +NM2) 3.8

����� �
�

O(N2MM∗) 3.9

� � � �� �
O(N2M∗) 3.10

� � � � O(N4M∗) 3.11

� � � � O(N4M∗) 3.12

� � � � O(N4M∗) 3.13

� �
�

�� O(N3M +N2M∗) 3.14

Table 3.2

End cases with scalar element and their costs.

Graphs After 3.4 Cost Proposition

� � � � � � � � O(N4) 3.15

� � � � � � � � � � � � � O(N4M +N2M∗) 3.16

� � � � �� � � � � ��
� � ��

O(N4M +N2M∗) 3.17

� � � � � � � � � � � � O(N6) 3.18

� � � � � � � � � � � �

� � � � � �

3.3. Maximizing reuse of computations. To analyze the algorithm further,
we have implemented a “dry run” version. All functions are empty objects that only
know how many indexes and variables they have. These are then wrapped by objects
that know which indexes and variable these are. A list of these wrapper objects then
defines a term. For example, the integrand w̄1(|γ0 − γ1|)φ̄j0 (γ0)φ̄j1 (γ1)θj1(γ0)Cj0(γ1)
from (3.7) is stored as

(3.10) [(w̄1(0, 2, “convolution”), (), (0, 1)), (φ̄(1, 1), (0, ), (0, )), (φ̄(1, 1), (1, ), (1, )),

(θ(1, 1), (1, ), (0, )), (C(1, 1), (0, ), (1, ))] .
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Table 3.3

Total operations sorted by complexity. The entry gives the number of operations of the com-
plexity given by the product of the row and column headings.

1 M M∗ M2 MM∗
1 6 496 6 4
N 716 1097 10
N2 193 1358 1054 2 2
N3 132 14
N4 130 260 12
N5 12
N6 12

When we sum over an index or integrate over a variable we remove involved terms
from the list and introduce a new term to represent the result. We keep track of the
cost of each operation and present the total cost for all 584 case in Table 3.3. There
are 2758 sums and 2758 integrations for 5516 total operations. (The initialization cost
2N2M +O(N3) to construct L, L−1, and Θ in section 2.2 is not included.)

Many of these operations are duplicates. For example, the computation (3.2) will

occur both in
� � � � ��

and in
� � � � �� �

. By caching and reusing the results
we can reduce our overall computational cost. The analysis is complicated by various
choices that do not affect the cost of individual terms but may affect the sharing of
computations between terms. Specifically, in the algorithm in section 3.2 we may be
able to apply Propositions 3.1, 3.2, and 3.3 in a different default order or apply one of
them to more than one place in the graph. In the propositions in section 3.4 we give
one order of operations to achieve the claimed cost, but other orders are sometimes
possible.

Finding the optimal choices to minimize the total cost appears to have combina-
torial complexity, so we use the following heuristic:

1. By inspection, identify 50 common computations and include them in the
cache.

2. For each term,
(a) generate many possible ways to compute each terms while keeping the

cost unchanged;
(b) intersect these ways to see what computations are unavoidable and in-

clude these in the cache.
3. Loop through the terms (arbitrary order):

(a) Identify which of the possible ways to compute it requires the fewest
computations not already in the cache (breaking ties arbitrarily).

(b) Include these in the cache.
We verified that the resulting cache is minimal in the sense that removing any element
from it prevents at least one term from being fully computed. With this procedure
we obtain 967 sums and 575 integrations for 1542 total operations. Table 1.1 in
section 1.2 shows how many computations we have of each complexity. By saving the
results of this optimized dry run, we obtain autogenerated code to use for real runs.

3.4. Propositions. In this section we collect propositions to compute the resid-
ual cases from section 3.2. For each case we treat one instance in which it arises.
Permutations of {w1, w2, w3} and the presence of V or factors created by earlier con-
tractions lead to additional instances, but they are all treated the same way. We
neglect overall constants such as |L|. These propositions consist simply in specifying
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the order of operations and counting the cost of each sum and integral. To specify the
order, we simply arrange the terms and use large parentheses. We indicate the cost
of a summation or integration by putting it in brackets (e.g., [N2M∗]) as the upper
limit on the

∑
or

∫
symbol. All sums actually go to N and all integrals are over all

space and the two spin values.
Proposition 3.5. We can compute �� with cost NM +N via the ordering

(3.11)

[N ]∑
j0

(∫ [NM ]

φ̄j0(γ0)θj0(γ0)dγ0

)
.

Proposition 3.6. We can compute
� � ��

with cost 2N2M∗+N2M +NM +
N2 +N via the ordering

(3.12)
[N2]∑
j0,j2

⎛
⎝∫ [N2M ]

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j0 (γ0)θj2(γ0)dγ
)⎛
⎝[NM ]∑

j1

φ̄j1(γ1)θj1(γ1)

⎞
⎠

(∫ [N2M∗]

w2(|γ1 − γ2|)φ̄j2 (γ2)θj0(γ2)dγ2

)
dγ1

⎞
⎠ .

Proposition 3.7. We can compute ����� �
�

� �
�

with cost MM∗ +M2 + 3NM +M
via the ordering

(3.13)

∫ [M ]

⎛
⎝∫ [M2]

w2(|γ1 − γ2|)

⎛
⎝[NM ]∑

j2

φ̄j2(γ2)θj2(γ2)

⎞
⎠
⎛
⎝[NM ]∑

j1

φ̄j1(γ1)θj1(γ1)

⎞
⎠

⎛
⎝∫ [MM∗]

⎛
⎝[NM ]∑

j0

φ̄j0(γ0)θj0(γ0)

⎞
⎠ w̄1(|γ0 − γ1|)w3(|γ2 − γ0|)dγ0

⎞
⎠ dγ1

⎞
⎠ dγ2 .

The cost O(MM∗) comes from noting that we can consider
∫
A(γ0)w̄1(|γ0−γ1|)w3(|γ2−

γ0|)dγ0 as performing a convolution γ0 → γ1 for each fixed value of γ2.

Proposition 3.8. We can compute
����� �
���

with cost MM∗ + 2NM2 + M2 +
NM +M via the ordering

(3.14)

∫ [M ]

⎛
⎝∫ [M2]

w2(|γ1 − γ2|)

⎛
⎝[NM2]∑

j2

φ̄j2 (γ2)θj2 (γ1)

⎞
⎠
⎛
⎝[NM2]∑

j1

φ̄j1(γ1)θj1(γ2)

⎞
⎠

⎛
⎝∫ [MM∗]

⎛
⎝[NM ]∑

j0

φ̄j0(γ0)θj0(γ0)

⎞
⎠ w̄1(|γ0 − γ1|)w3(|γ2 − γ0|)dγ0

⎞
⎠ dγ1

⎞
⎠ dγ2 .
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Proposition 3.9. We can compute ����� �
�

with cost N2MM∗+N2M2+2NM2+
M2 +M via the ordering

(3.15)

∫ [M ]

⎛
⎝∫ [M2]

⎡
⎣[NM2]∑

j1

φ̄j1(γ1)

⎛
⎝[NM2]∑

j0

φ̄j0(γ0)θj0(γ1)w̄1(|γ0 − γ1|)

⎞
⎠

⎛
⎝[N2M2]∑

j2

θj2(γ0)

(∫ [N2MM∗]

w2(|γ1 − γ2|)w3(|γ2 − γ0|)φ̄j2 (γ2)θj1(γ2)dγ2

)⎞
⎠
⎤
⎦ dγ0

⎞
⎠

dγ1 .

Proposition 3.10. We can compute
� � � �� �

with cost 3N2M∗ + N2M +
2NM +N2 +N via the ordering

(3.16)

[N2]∑
j0,j3

⎛
⎝∫ [N2M ]

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j0 (γ0)θj3(γ0)dγ0

)
⎛
⎝[NM ]∑

j1

φ̄j1(γ1)θj1(γ1)

⎞
⎠
⎡
⎣∫ [N2M∗]

(∫ [N2M∗]

w3(|γ2 − γ3|)φ̄j3 (γ3)θj0 (γ3)dγ3

)
⎛
⎝[NM ]∑

j2

φ̄j2(γ2)θj2(γ2)

⎞
⎠w2(|γ1 − γ2|)dγ2

⎤
⎦ dγ1

⎞
⎠ .

Proposition 3.11. We can compute
� � � �

with cost N4M∗ + 2N2M∗ +
N4M +N4 +N3 +N2 +N via the ordering

(3.17)
[N4]∑

j0,j1,j2,j3

⎛
⎝∫ [N4M ]

φ̄j1 (γ1)θj2(γ1)

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j0(γ0)θj3(γ0)dγ0

)
[∫ [N4M∗]

(∫ [N2M∗]

w3(|γ2 − γ3|)φ̄j3 (γ3)θj0 (γ3)dγ3

)

w2(|γ1 − γ2|)φ̄j2 (γ2)θj1 (γ2)dγ2

]
dγ1

⎞
⎠ .

Proposition 3.12. We can compute
� � � �

with cost N4M∗ + 2N2M∗ +
N4M +N4 +N3 +N2 +N via the ordering

(3.18)
[N4]∑

j0,j1,j2,j3

⎛
⎝∫ [N4M ]

φ̄j1 (γ1)θj3(γ1)

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j0(γ0)θj2(γ0)dγ0

)
[∫ [N4M∗]

(∫ [N2M∗]

w3(|γ2 − γ3|)φ̄j3 (γ3)θj1 (γ3)dγ3

)

w2(|γ1 − γ2|)φ̄j2 (γ2)θj0 (γ2)dγ2

]
dγ1

⎞
⎠ .
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Proposition 3.13. We can compute
� � � �

with cost N4M∗ + 2N2M∗ +
N4M +N4 +N3 +N2 +N via the ordering

(3.19)

[N4]∑
j0,j1,j2,j3

(∫ [N4M ]

φ̄j1(γ1)θj2(γ1)

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j0 (γ0)θj3 (γ0)dγ0

)
[∫ [N4M∗]

(∫ [N2M∗]

w3(|γ2 − γ3|)φ̄j3 (γ3)θj1 (γ3)dγ3

)

w2(|γ1 − γ2|)φ̄j2(γ2)θj0(γ2)dγ2

]
dγ1

)
.

Proposition 3.14. We can compute
� �

�
�� with cost 3N2M∗+N3M+NM+

N3 +N2 +N via the ordering

(3.20)

[N3]∑
j1,j2,j3

⎛
⎝∫ [N3M ]

⎛
⎝[NM ]∑

j0

φ̄j0 (γ0)θj0 (γ0)

⎞
⎠

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j1 (γ1)θj3(γ1)dγ1

)(∫ [N2M∗]

w2(|γ1 − γ2|)φ̄j2 (γ2)θj1(γ2)dγ2

)
(∫ [N2M∗]

w3(|γ1 − γ3|)φ̄j3 (γ3)θj2(γ3)dγ3

)
dγ0

⎞
⎠ .

Proposition 3.15. We can compute with cost N4+N3+N2+N via the
ordering

(3.21)

[N4]∑
j0,j1,j2,j3

Aj0j1j2dBj0j1j2j3 .

Proposition 3.16. We can compute
� � �

with cost 2N2M∗ + N4M +
N3M +N4 +N3 +N2 +N via the ordering

(3.22)

[N4]∑
j0,j1,j3,j4

⎛
⎝∫ [N4M ]

⎡
⎣[N3M ]∑

j2

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j0(γ0)θj2(γ0)dγ0

)

(∫ [N2M∗]

w2(|γ1 − γ2|)φ̄j2(γ2)θj3(γ2)dγ2

)⎤
⎦ φ̄j1 (γ1)θj4(γ1)dγ1

⎞
⎠Aj0j1j3j4 .
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Proposition 3.17. We can compute
� � ��

with cost 2N2M∗ + N4M +
NM +N4 +N3 +N2 +N via the ordering

(3.23)

[N4]∑
j0,j2,j3,j4

⎡
⎣∫ [N4M ]

(∫ [N2M∗]

w̄1(|γ0 − γ1|)φ̄j0(γ0)θj3(γ0)dγ0

)
⎛
⎝[NM ]∑

j1

φ̄j1(γ1)θj1(γ1)

⎞
⎠(∫ [N2M∗]

w2(|γ1 − γ2|)φ̄j2 (γ2)θj4 (γ2)dγ2

)
dγ1

⎤
⎦Aj0j2j3j4 .

Proposition 3.18. We can compute with cost N6 +N5 +N4 +N3 +
N2 +N via the ordering

(3.24)

[N4]∑
j0,j1,j2,j3

Aj0j1j2j3

⎛
⎝[N6]∑

j4,j5

Bj2j3j4j5Cj4j5j0j1

⎞
⎠ .

4. Further considerations.

4.1. Using localization. In this section we assume w1 and w2 are localized in
space in a region of “volume” K < M . (Since w3(|γ − γ′|) = (‖r− r′‖)−1 we cannot
assume it is local.)

Consider the difficult integral

(4.1) Aj1,j2(γ0, γ1) =

∫
w2(|γ1 − γ2|)w3(|γ2 − γ0|)φ̄j2 (γ2)θj1(γ2)dγ2

from (3.15), which in general costs N2MM∗. For fixed values of γ1, j1, and j2,
the function w2(|γ1 − γ2|)φ̄j2(γ2)θj1(γ2) is localized by w2 to a region of volume K.
Convolving with w3(|γ2 − γ0|), which is also localized, costs K2 and results in a
function localized to a region of volume proportional to K. (The volume is at most
27K but we neglect the factor of 27 for clarity.) The cost to do (4.1) is thus K2N2M .
The function Aj1,j2(γ0, γ1) is “banded” and costs KM to represent. Inserting it in
(3.15), we obtain
(4.2)

[N ]∑
j0

⎛
⎝∫ [NM ]

φ̄j0 (γ0)

⎡
⎣∫ [NKM ]

w̄1(|γ0 − γ1|)θj0 (γ1)

⎛
⎝[NKM ]∑

j1

φ̄j1 (γ1)

⎛
⎝[N2KM ]∑

j2

θj2(γ0)Aj1,j2(γ0, γ1)

⎞
⎠
⎞
⎠ dγ1

⎤
⎦
⎞
⎠ dγ0 .

Our total cost is thus K2N2M +KN2M + 2KNM +NM +N .
If K2 < M∗, then localization was helpful. Similar arguments apply to the other

cyclic terms in (3.13) and (3.14). If K2M < N2M∗, then the cyclic terms are no

longer dominant in cost. The next most costly terms are
� � � �

,
� � � �

, and
� � � �

with dominant cost N4M∗, which localization cannot significantly improve.
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4.2. RI approximation. The RI technique is widely used for integrals when
geminals are present; see the discussion in the review [27]. In this section we apply it
to our most costly cyclic case, which costs O(N2MM∗) using (3.15).

Suppose we can find an orthonormal set of functions {uq(γ)}Qq=1 such that for all
values of j1, j2, and γ0 there is a sufficiently good approximation

(4.3)

∫
w2(|γ1 − γ2|)w3(|γ2 − γ0|)φ̄j2(γ2)θj1(γ2)dγ2

≈
Q∑

q=1

(∫
w2(|γ1 − γ3|)uq(γ3)dγ3

)(∫
uq(γ2)w3(|γ2 − γ0|)φ̄j2 (γ2)θj1(γ2)dγ2

)
.

(The name “resolution of the identity” comes from considering
∑Q

q=1 uq(γ)uq(γ
′) as

an approximation of the identity operator as an integral operator.) Substituting (4.3)
into (3.15) and rearranging, we obtain

(4.4)

Q∑
q=1

⎛
⎝∫ [QM ]

⎛
⎝[QN2M ]∑

j0,j1

φ̄j0 (γ0)

[∫ [QN2M∗]

φ̄j1 (γ1)θj0(γ1)w̄1(|γ0 − γ1|)
(∫ [QM∗]

w2(|γ1 − γ3|)uq(γ3)dγ3

)
dγ1

]
⎡
⎣[QN2M ]∑

j2

θj2(γ0)

(∫ [QN2M∗]

uq(γ2)w3(|γ2 − γ0|)φ̄j2 (γ2)θj1(γ2)dγ2

)⎤⎦
⎞
⎠ dγ0

⎞
⎠ .

The dominant cost changed from N2MM∗ to QN2M∗, which means we have
replaced a factor of M with Q. The significance of this reduction is a matter of
interpretation. On the one hand, the review [27] is enthusiastic about this technique,
thus implying useful approximations (4.3) can be obtained with Q � M . On the
other hand, the requirement that the approximation hold for all values of j1, j2, and
γ0 suggests Q ≈M ; otherwise one could change the representation of functions of γ to
reduce M to Q. Some gain can be had from the approximate nullspace of convolving
with w2, but if w2 is localized and has a cusp, then this gain may not be significant.
Note that these considerations are not specific to our method but apply whenever RI
is used.

4.3. Using Gaussian geminals. In this section we explore the computational
gain from choosing Gaussian geminals. Since the geminal would be a Gaussian (of pos-
sibly different exponent) for each spin variable and the integrals would be computed
separately, we will neglect spin in our discussion. Thus we assume wp(‖r1 − r2‖) =
exp(−τp‖r1 − r2‖2) for p = 1, 2. (Since w3(|γ− γ′|) = (‖r− r′‖)−1 we cannot assume
it is a Gaussian.)

In the dominant cyclic cases, the difficulty is the computation of integrals of the
form

(4.5)

∫
A(γ2)w1(|γ0 − γ2|)w2(|γ1 − γ2|)dγ2 ,

which reduces now to

(4.6)

∫
A(r3) exp(−τ1‖r1 − r3‖2) exp(−τ2‖r2 − r3‖2)dr3 .
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By multiplying out and completing the square, we obtain
(4.7)

exp

(
− τ1τ2
τ1 + τ2

‖r1 − r2‖2
)∫

exp

(
−(τ1 + τ2)

∥∥∥∥r3 − τ1r1 + τ2r2
τ1 + τ2

∥∥∥∥
2
)
A(r3)dr3 .

Substituting s = (τ1r2 + τ2r2)/(τ1 + τ2), we have

(4.8) exp

(
− τ1τ2
τ1 + τ2

‖r1 − r2‖2
)∫

exp
(
−(τ1 + τ2) ‖r3 − s‖2

)
A(r3)dr3 ,

which we can integrate in r3 at cost O(M∗) to obtain

(4.9) exp

(
− τ1τ2
τ1 + τ2

‖r1 − r2‖2
)
B(s) .

Substituting back for s we obtain

(4.10) C(r1, r2) = exp

(
− τ1τ2
τ1 + τ2

‖r1 − r2‖2
)
B

(
τ1r2 + τ2r2
τ1 + τ2

)
,

which costs O(M2) to represent. By using this technique we avoid costs with factors
of MM∗. Specifically, we reduce the cost of (3.15) from O(N2MM∗) to O(N2M2),
the cost of (3.13) from O(MM∗ + NM2) to O(NM2), and the cost of (3.14) from
O(MM∗) to O(M2). Since these costs include factors of M2, these cases are still the
most expensive.
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