
A Fast Transform for Spherical Harmonics

Martin J. Mohlenkamp

The Journal of Fourier Analysis and Applications
5(2/3):159–184, 1999.

Affiliation. Department of Mathematics, Yale University; and Department of Applied Mathemat-
ics, University of Colorado, Campus Box 526, Boulder CO 80309-0526, mjm@colorado.edu.

Math Subject Classification. Primary 65T20; Secondary 42C10, 33C55.

Keywords and Phrases. Spherical Harmonics, Fast Transforms, Associated Legendre Functions.

Acknowledgements and Notes. I would like to thank my thesis advisor, R.R. Coifman, for his
help and guidance.

Abstract

Spherical Harmonics arise on the sphere S2 in the same way that the (Fourier) exponential functions
{eikθ}k∈Z arise on the circle. Spherical Harmonic series have many of the same wonderful properties
as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous
to the Fast Fourier Transform. Without a fast transform, evaluating (or expanding in) Spherical
Harmonic series on the computer is slow—for large computations prohibitively slow. This paper
provides a fast transform.

For a grid of O(N2) points on the sphere, a direct calculation has computational complexity
O(N4), but a simple separation of variables and Fast Fourier Transform reduce it to O(N 3) time.
Here we present algorithms with times O(N 5/2 logN) and O(N2(logN)2).

The problem quickly reduces to the fast application of matrices of Associated Legendre Functions
of certain orders. The essential insight is that although these matrices are dense and oscillatory,
locally they can be represented efficiently in trigonometric series.

1 Introduction

Spherical Harmonics arise on the sphere S2 in the same way that the (Fourier) exponential functions
{eikθ}k∈Z arise on the circle. Spherical Harmonic series have many of the same wonderful properties
as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous
to the Fast Fourier Transform. Without a fast transform, evaluating (or expanding in) Spherical
Harmonic series on the computer is slow—for large computations prohibitively slow. This paper
provides a fast transform.

Using spherical coordinates (φ ∈ (0, π), θ ∈ [0, 2π)), the Spherical Harmonics for S2 can be
represented as {Pm

n (cosφ)eimθ} where n ≥ |m|, m and n are integers, and the Pm
n are Associated

Legendre functions. When properly normalized, this forms a basis for the sphere with measure
sinφdφdθ.

1

1 INTRODUCTION 2

On a grid of 2N points equispaced in θ by N gaussian nodes in cosφ, N 2 basis functions are
resolved. If we expand (or evaluate) directly using these basis functions, it will take 2N 4 compu-
tations. In the θ variable, our basis is simply Fourier series and we can use the FFT (Fast Fourier
Transform). Applying the FFT for N values of φ requires N ×2N log(2N) computations, and leaves
us with a set of 2N problems indexed by m. Each problem is: on an interval of N points, expand
(evaluate) a given function using the basis {Pm

n (cosφ)} with measure sinφdφ. If we do each of these
directly, it will take 2N ×O(N 2) computations. Our overall cost is then O(N 3).

Here we present a method for expanding (evaluating) using {Pm
n (cosφ)} in O(N log2N) time,

with constant independent of m. This method allows us to reduce the overall cost to O(N 2 log2N).
We also present an O(N5/2 logN) algorithm that, although asymptotically slower, performed better
in our tests. Both methods use precomputed, compressed representations of the Associated Legendre
function bases.

This paper is based on the thesis [Moh97]. More details may be found there.

1.1 Statement of the Problem

We are given a set of Spherical Harmonics:

{
P̃m

n (cosφ)eimθ/
√

2π
}

(m,n)∈IN

(1)

defined on the sphere (φ ∈ (0, π), θ ∈ [0, 2π)). P̃m
n is the Associated Legendre function of degree

n and order m, normalized so that our set of functions is orthonormal on the sphere. The indices
allowed are restricted to the set

IN = {(m,n) ∈ Z × Z : 0 ≤ n < N,−n ≤ m ≤ n}. (2)

For the evaluation problem, we are also given a set of coefficients {αm
n }(m,n)∈IN

and we form the
sum

f(φ, θ) =
∑

IN

αm
n P̃

m
n (cosφ)eimθ/

√
2π. (3)

This sum is evaluated on a grid in φ × θ with 2N equispaced points in θ and N gaussian nodes in
cosφ: {

(φj , θk) =

(
cos−1(gN

j), 2π
k

2N

)
: j, k ∈ Z; 0 ≤ j < N, 0 ≤ k < 2N

}
. (4)

(See e.g. [FPTV92] for discussion of the gaussian nodes.) The evaluation problem for Spherical
Harmonics is to compute the O(N 2) output values f(φj , θk) from the O(N2) input values αm

n in a
fast, numerically stable way.

The expansion problem for Spherical Harmonics is dual to the evaluation problem. We are given
the O(N2) sampled values f(φj , θk) of a function of the form (3) and wish to compute the O(N 2)
output values αm

n in a fast, numerically stable way.

1.2 Summary of Results

The problem of the Fast Transform quickly reduces to a set of 2N problems indexed by m (−N <
m < N). (See Section 2.3.) The problems are to find a fast application for the matrices

Mm
n,j =

(√
sinφjP̃

m
n (cosφj)

)
n,j

. (5)

These matrices are dense and oscillatory. (See Figure 2 in Section 2.4.)

2 BACKGROUND 3

To understand these matrices, we model them using quasi-classical (WKB) frequency estimates.
(Section 2.4.) The model is

Mm
n,j ≈

(
exp

(∫ φj

i

√
(n+ 1/2)2 − m2 − 1/4

sin2 t
dt

))

n,j

= (exp(inφjΦ
m(n, φj)))n,j . (6)

We now fix m and analyze Φm(n, φ). (See [BCG93] for a similar model analysis.) If for each n,
Φm(n, φ) is constant as a function of φ, this matrix application becomes the evaluation of a Fourier
series and so can be done fast using the FFT. Φm(n, φ) is not constant, but we can partition φ-space
into a small number of intervals, on each of which Φm(n, φ) is almost constant. Using this partition,
we can write exp(inφΦm(n, φ)) as a sum of O(

√
N logN) localized exponentials. The partition,

however, depends on n (and m). Restricting ourselves to dyadic partitions, we can find a suitable
partition for each Φm(n, φ), and yet the total collection of intervals used is manageable. We can
now represent the entire matrix (6) in terms of O(N 3/2 logN) exponentials, apply it in this same
O(N3/2 logN) time, and return to normal coordinates with the FFT in O(N log2N) time. We call
this the One Dimensional Algorithm.

If for each φ, Φm(n, φ) is constant as a function of n, this matrix application becomes an expansion
into a Fourier series, which can also be done fast using the FFT. Thus we can use the same technique
in the n coordinate. In fact, we can partition in both coordinates at the same time, which corresponds
to breaking the matrix into dyadic rectangles. In ordinary coordinates, each rectangle gives the
interaction of some interval in n with some interval in φ. We instead represent each rectangle by
the interactions of a small number of exponentials in n with a small number of exponentials in φ.
We can then represent the matrix (6) in terms of O(N logN) interactions, apply it in O(N logN)
time, and return to normal coordinates with the FFT in O(N log2N) time. The partition into
rectangles will depend on m, and will not generally be a tensor product partition. We call this the
Two Dimensional Algorithm.

This model gives the proper intuition, but is not suitable for proofs. To prove our compression
estimates, we construct a quantitative type of Quasi-Classical (WKB) theory for solutions to Schrö-
dinger equations in one dimension. Given a space localization, this theory gives us rigorous bounds
on the number of local Fourier coefficients needed for a given precision. This theory also provides
an intuition using ‘instantaneous frequency’ and the ever-elusive justification for this intuition.

We have implemented these algorithms, mainly for diagnostic purposes. Experiments have shown
the algorithms to be stable and to work well at high precision. The one dimensional algorithm is
outperforming the compression predictions, while the two dimensional is not performing as well.
In our implementation the one dimensional algorithm becomes faster than the direct method at
N = 128. By N = 512 it is faster by a factor of three.

2 Background

2.1 History

Spherical Harmonics arise naturally when one tries to generalize Fourier Series to the next dimension.
Many of their properties, as well as references to their earlier history, may be found in Hobson
[Hob31]. A more modern perspective can be found in [SW71]. The Spherical Harmonics can be
built from Associated Legendre functions, which are considered ‘special functions’, and therefore
appear in many handbooks of functions, e.g. [AS64].

Modern attempts at a fast transform were underway by the time of Dilts [Dil85], who reduced
the operations count but not the order of the algorithm. Duvall, Elowitz, and Hill [DEH89] evaluate
this method, and conclude the best current (1988) method is due to Brown [Bro85]. He separates
variables and does an FFT in the φ variable to reduce the operations count to O(N 3) (See Section
2.3). This result is very likely much older, and indeed Brown does not claim originality.

2 BACKGROUND 4

Driscoll and Healy [DH94] have an O(N log2N) algorithm for expansions (not evaluations) in
{Pm

n (cosφ)} with constant independent of m. Their algorithm becomes unstable as m increases,
however.

Orszag [Ors86] proved a general result that one can expand or evaluate any set of Sturm-Liouville
eigenfunctions (e.g. {Pm

n (cosφ)} for fixed m) in O(N log2N/ log logN) time. The dependency on m
is suppressed, however, so it does not yield a result for the full transform. Our approach is somewhat
similar to Orszag’s, but we are able to track down the m dependence.

Alpert and Rokhlin [AR91] have an O(N logN) algorithm for Legendre Polynomials (P 0
n). As

m increases, however, their technique would seem to break down. A frequency space version of our
Section 4.4 would show that in fact one could have uniform bounds in m. We draw much from their
ideas and approach.

2.2 What are Spherical Harmonics?

Spherical Harmonics can be generated in the same way as Fourier Series, simply in one dimension
higher. A development which emphasizes these parallels may be found in Stein and Weiss [SW71,
Chapter IV]. Our motivation for the consideration of Spherical Harmonics is the same as for Fourier
Series, e.g. both diagonalize all linear operators which commute with rotations.

The Spherical Harmonics are eigenfunctions of the Spherical Laplacian

∆3S = csc2 φ
∂2

∂θ2
+

∂2

∂φ2
+ cotφ

∂

∂φ
(7)

which is the Laplacian in R3 restricted to the sphere. ∆3S is self-adjoint and rotation-invariant,
which implies that the eigenspaces are preserved by rotations and are orthogonal. The nth eigenspace
Λn has eigenvalue −n(n− 1), dimension 2n+ 1, and consists of the homogeneous harmonic polyno-
mials of degree n restricted to the sphere. All eigenfunctions are smooth, and together they span
L2(S2).

For fixed n, we can organize the Λn as {P̃m
n (cosφ)eimθ/

√
2π}−n≤m≤n. The condition on P̃m

n to

make this a set of (smooth) spherical harmonics is that P̃m
n (1) 6= ±∞ and

[
∂2

∂φ2
+ cotφ

∂

∂φ
− m2

sin2 φ

]
P̃m

n (cosφ) = −n(n− 1)P̃m
n (cosφ). (8)

This equation identifies the P̃m
n ’s up to a constant as the Associated Legendre Functions (of the

first kind) of order m and degree n. We use the tilde (̃·) to indicate the L2 normalized version of
the classically defined Associated Legendre functions, denoted Pm

n . We construct P̃m
n explicitly in

Section 5.1.1.

2.3 First Reductions of the Problem

First note that we can use the FFT in θ (for each φ). Thus, for total computational cost of
O(N2 logN), we have reduced the evaluation problem to a set of N problems indexed by m (−N <
m < N). Each problem is: Given the O(N) inputs αm

n , compute the N outputs

f(m̂, φj) =

N−1∑

n=|m|

αm
n P̃

m
n (cosφj). (9)

Evaluated directly, each problem takes O(N 2) time, and so together they take O(N 3).
For the expansion problem we have learned first that these Spherical Harmonics are an orthonor-

mal set, and so we should compute αm
n by

αm
n =

∫ π

0

∫ 2π

0

f(φ, θ)P̃m
n (cosφ)

e−imθ

√
2π

sinφdφdθ. (10)

2 BACKGROUND 5

Again we can use the FFT in θ and reduce the expansion problem to a set of N problem indexed by
m, each of which is: Given the N sample values f(φj , m̂) compute the O(N) coefficients αm

n . Our
next task is to discretize the remaining integral. With our assumption (3) on the form of f , we only
need be able to compute inner products of Pm

n ’s (m fixed). For n, n′ < N , P̃m
n (cosφ)P̃m

n′ (cosφ) =

(sinφ)2mP̃
(m,m)
n−m (cosφ)P̃

(m,m)
n′−m (cosφ) = P (cosφ) is a polynomial in cosφ of degree at most 2N − 2.

Thus using gaussian nodes and weights in cosφ, we can capture this exactly using N points. (See
e.g [FPTV92].) Each reduced problem can be solved by evaluating this sum, which takes O(N 2)
time.

We will also find it convenient to modify our problems slightly. We define

ψm
n (φ) =

√
sinφP̃m

n (cosφ). (11)

The reduced evaluation and expansion problems then become matrix applications:

(ψm
n (φj))n,j α

m
n =

√
sinφjf(φj , m̂) (12)

(ψm
n (φj))j,n (

√
sinφjf(φj , m̂)wN (j)) = αm

n . (13)

In our algorithm, we find a way to apply these matrices quickly. The method works equally well for
the matrix transpose and so the evaluation and expansion problems become one problem. We will
usually ignore the expansion problem and only consider the evaluation problem.

One property of P̃m
n (cosφ) that is only apparent from its explicit construction in Section 5.1.1

is that it is either even or odd across φ = π/2 as n −m is even or odd. We can solve the reduced
problem separately for the even and odd components on φ ∈ (0, π/2) and then use simple reflections
to produce the final solution. We use this explicitly in Section 4.3 when we prove compression results
on (0, π/2), in Section 5.1.3 where we use it to justify a specialized search, and to deal with edge
effects. The use of parities also reduces computation time by a factor of two.

2.4 Quasi-Classical (WKB) Frequency Estimates

There is a method for estimating the solutions to some types of differential equations, in particular
Schrödinger equations. See e.g. Landau and Lifschitz [LL77, Chapter VII] or Bender and Orszag
[BO78]. We will use this to get a preliminary description of the Associated Legendre functions and
to motivate the algorithms in Section 3.

With the reductions made in Section 2.3, we are considering {ψm
n (φ) =

√
sinφP̃m

n (cosφ)} as a
basis with measure dφ. From (8) we can deduce the differential equation:

[
d2

dφ2
− m2 − 1/4

sin2 φ

]
ψm

n (φ) = −(n+ 1/2)2ψm
n (φ) (14)

which is a nice Schrödinger equation, to which we can apply the Quasi-Classical approximation.
This approximation yields ‘instantaneous frequency’

νm
n (φ) =

√
(n+ 1/2)2 − m2 − 1/4

sin2 φ
(15)

valid when the argument of the root is positive, and the approximation ψm
n (φ) ≈ exp

(
i
∫ φ

νm
n (t)dt

)
.

These estimates tell us that at the edges of the interval our functions decay rapidly and smoothly.
As we move toward the center of the interval, they have instantaneous frequency increasing and
concave down. See Figure 1.

Globally this function is complicated, but locally it looks very much like a trigonometric function.
This is the motivation behind our one dimesional algorithm (Section 3.2). We partition our function

2 BACKGROUND 6

Figure 1: ψ20
60(φ) =

√
sinφP̃ 20

60 (cosφ) on [0, π].

and represent each piece in localized trigonometric functions. These representations will be very
efficient, and convert our matrix to a sparse or ‘compressed’ form. The partition we choose will
depend on m and n. For fixed m, we wish to express the matrix (ψm

n (φj))n,j in sparse (compressed)
form. Since the partition changes with n, this is not simply a change of basis, but is an adaptive,
non-standard representation of the matrix.

These estimates can also be used to model the entire matrix (ψm
n (φj))n,j (m fixed). See Figure 2.

Note that the matrix is also almost trigonometric as a function of n. With a proper two dimensional
partition, we should be able to compress this matrix even further. This is the motivation for the
two dimensional algorithm in Section 3.3. The partition chosen will depend on m.

Figure 2: The positive part of ψ40
n (φ) =

√
sinφP̃ 40

n (cosφ) for n in [0, 256] and φ in [0, π/2]. The n
axis points down, and the φ axis to the right.

The Quasi-Classical method is important in that it gives an understanding of the behavior of the
Associated Legendre functions and motivation for our algorithms. It lacks sufficient rigor for use in

3 THE STRUCTURE OF THE ALGORITHMS 7

proofs, however. In Section 4.1 we develop an alternative method which gives rigorous results of the
type we need.

3 The Structure of the Algorithms

This section gives the structure of the algorithms used for the Spherical Harmonic transform. The
fact that they do in fact give the transform follows from simple facts such as orthogonality and is
explained here. The speed of these algorithms depends mostly on the compression which is achieved
in the precomputation stage, and this is dealt with in Section 4. We deal specifically with the
reduced form of the evaluation problem, from Section 2.3.

We present two algorithms. The first, the one dimensional algorithm, is asymptotically slower,
but has performed better in numerical testing. The core of both algorithms is a non-standard
matrix representation and multiplication. We note the similarities between our approach and the
non-standard matrix multiplication in [BCR91].

3.1 Local Trigonometric Expansions

To compress the Associated Legendre functions we use variations of the standard Local Cosine basis.
See [CM91] for a proof of its properties and [Wic94] (e.g.) for an exposition of its uses. A Local
Cosine basis is constructed as follows: We begin with a sequence of points on the line (interval,
circle) · · · ai < ai+1 · · · . Let Ii = [ai, ai+1]. We have a set of compatible bells, indexed by their
interval, {bi(x)}. These bells have the properties that bi(x)bi−1(x) is even about ai, bi(x)bi′(x) = 0
if i′ 6= i± 1, and

∑
i b

2
i (x) = 1. On each interval we have a set of cosines of the proper scaling and

shift, denoted {
cpi (x) =

√
2

ai+1 − ai
cos

(
(p+ 1/2)π(x− ai)

ai+1 − ai

)}∞

p=0

. (16)

The set {bi(x)cpi (x)} forms an orthonormal basis for the line. There is a fast LCT (Local Cosine
transform) based on the FFT, using techniques similar to those in [FPTV92, Chapter 12].

3.2 The One Dimensional Algorithm

In the precomputation stage, we express each ψm
n in the Local Cosine basis which requires the least

number of coefficients above some given ε. We require the intervals to have dyadic size and dyadic
position (intervals of length 2−j are k2−j from the edge, k ∈ Z). We denote the set of dyadic
intervals by D and the Local Cosine basis element for interval I with frequency p by bI(φ)cpI(φ). We
can then write

ψm
n (φj) =

∑

I∈D

N |I|−1∑

p=0

λmn
Ip bI(φj)c

p
I(φj). (17)

Each ψm
n has λmn

Ip ’s only for I’s in some particular partition. We approximate the full sum with the
sum where we discard all λmn

Ip that are smaller than ε.
For the reduced evaluation problem from Section 2.3, m is fixed, we are given {αm

n }, and we wish
to form the sum

N/2−1∑

n=|m|

αm
n ψ

m
n (φj). (18)

We can reorganize this as

∑

n

αm
n

∑

I∈D

∑

p

λmn
Ip bI(φj)c

p
I(φj) =

∑

I∈D

bI(φj)
∑

p

cpI(φj)
∑

n

αm
n λ

mn
Ip (19)

3 THE STRUCTURE OF THE ALGORITHMS 8

and sum over n to obtain
=
∑

I∈D

bI(φj)
∑

p

γm
Ipc

p
I(φj). (20)

To compute all the γm’s costs as many computations as we have λ’s. (Remember we have discarded
λmn

Ip < ε.) To evaluate the sums over I and p at all φj ’s, we do Local Cosine transforms at logN

scales, for total cost N log2N .
In Section 4.3 we will show that for each ψm

n we need at most O(
√
m logN(log ε)7/2) coefficients.

Adding this over n yields a total count of λ’s of O(
√
mN logN(log ε)7/2). The application of the

compressed matrix (computation of γ) thus dominates the Local Cosine transforms. Doing this
evaluation for N values of m gives us a total operations count of O(N 5/2 logN(log ε)7/2).

3.3 The Two Dimensional Algorithm

We again deal with the reduced evaluation problem (Section 2.3) for some fixed m. We consider it in
its matrix form (ψm

n (φj))n,j α
m
n =

√
sinφjf(φj , m̂). Define the matrix Mn,j = ψm

n (φj) with ψm
n ≡ 0

for n < |m|. Let α be the vector of values of αm
n , and f be the vector of values of

√
sinφjf(φj).

We can apply M to α directly with computation time equal to the number of nonzero entries of M ,
which is N(N −m) = O(N2).

Instead we break M into disjoint rectangular submatrices. We can apply M to α by applying
each submatrix to some part of α and putting the result in the appropriate place in f . Conceptually,
it is best to think of this as applying the transpose of the vector α (αt) to M from above, and getting
out f t, as in Figure 3. In the end, several rectangles contribute to each fj , but only additively. We
can treat each rectangle as a separate problem. In particular, we can do a distinct change of basis
on each rectangle. As input for these rectangles, we must expand α locally into many different bases.
Similarly, we have to recombine the outputs to get f .

? -

M

αt

f t
=

Figure 3: Applying a vector to a matrix from above.

We assure the fast computation of inputs from α by first requiring the rectangles be dyadic (in
size and position). Second, we only allow our change of basis be to Local Cosine series. With these
restrictions, preparing α and assembling f take at most N log2N computations.

The objective of this approach is to find a partition so that each rectangle can be represented
by a small number of (Fourier) coefficients. The cost to apply this matrix is the total number of
these which are greater than ε. Simply removing the rectangles creates a discontinuity at the edges,
however, which makes the Fourier coefficients decay very slowly. We would instead like to separate
the rectangles smoothly.

We consider the partitioning in n, which has to do with expansions of α. Fix j and a dyadic
interval I. Let αI be α restricted to I, I∗ be the symmetric double of I, and bI a smooth function
supported on I∗ with 1/2 ≤ b(n) ≤ 1 when n ∈ I. As part of the matrix application, we wish to

4 COMPRESSION RATES 9

compute the inner product 〈Mn,j |I , α〉 = 〈Mn,j , αI〉 = 〈Mn,jbI , αI/bI〉. Let (̂·) represent a Fourier

expansion on I∗. Then 〈Mn,jbI , αI/bI〉 = 〈M̂n,jbI , α̂I/bI〉. Since Mn,jbI is as smooth as M , this

eliminates the discontinuity. We will store the coefficients M̂n,jbI instead of M̂n,j |I . We refer to this
trick as using ‘double bells’ or ‘double sized intervals’.

Note that with this approach we lose orthogonality. All we really need is the ability to apply
the matrix, which we retain. An advantage of this method is that adjacent rectangles do not
interact. This removes issues of bell compatibility and greatly simplifies searches (Section 5.1.3). A
disadvantage is a factor of two inefficiency in the bell cost.

In Section 4.4 we will show that for each m we need at most O(N logN(log ε)7) coefficients
for M , with constants independent of m. The operations count of O(N log2N) for the LCTs thus
dominates. Doing this evaluation forN values ofm gives us a total operations count of O(N 2 log2N).

4 Compression Rates

This section gives rigorous proofs of bounds on the number of coefficients retained after compressing
using the one or two dimensional partitioning schemes described in Section 3. We first construct a
general theory of compression for solutions to Schrödinger equations, and then apply this theory to
our specific case.

By ‘compression’ we mean the representation (to some prescribed accuracy) of a given function
or matrix in a small number of parameters. We also require that we be able to effectively use
these parameters in place of the function. This requirement means that a sparse representation of
a function in terms of a basis with fast transform is compression, while the representation of the
matrix (ψm

n (φj))n,j by the two parameters m and N is not.

4.1 A Quantitative Quasi-Classical Theory

4.1.1 First Bounds

Theorem 4.1 Let ψ(x) be a solution to ψ′′(x) = −V (x)ψ(x) and b(x) a smooth function supported
on [0, 1]. Then:

|b̂ψ(ξ)| ≤ ||(V (x) − V ∗)b||p + ||b′′||p + 2|ξ| · ||b′||p
|V ∗ − ξ2| ||ψ||q (21)

for any V ∗ ∈ R and 1 = (1/p) + (1/q); 1 ≤ p, q ≤ ∞.

Proof: Integrating twice by parts, we obtain

b̂ψ(ξ) =

∫ 1

0

[b′′(x)ψ(x) + 2b′(x)ψ′(x) + b(x)ψ′′(x)]
e−ixξ

(−iξ)2 dx. (22)

Considering the b′ψ′ term separately and integrating by parts again, we have:

b̂ψ(ξ) =
1

−ξ2
∫ 1

0

[−b′′(x) − V (x)b(x) + 2iξb′(x)]ψ(x)e−ixξdx. (23)

Choosing any V ∗ we have

b̂ψ(ξ)

(
1 +

V ∗

−ξ2
)

=
1

−ξ2
∫ 1

0

[−b′′(x) − (V (x) − V ∗)b(x) + 2iξb′(x)]ψ(x)e−ixξdx (24)

b̂ψ(ξ) =
1

V ∗ − ξ2

∫ 1

0

[−b′′(x) − (V (x) − V ∗)b(x) + 2iξb′(x)]ψ(x)e−ixξdx (25)

and the theorem follows by Hölder’s inequality. ¤

4 COMPRESSION RATES 10

4.1.2 Measuring Localization

We have ‘localized’ b̂ψ near ξ = ±
√
V ∗. The localization is better when we choose V ∗ ≈ V (x).

In a rough sense then, we can claim ψ has local frequency ±
√
V ∗ and instantaneous frequency

±
√
V (x). To quantify these statements, we would like to know how many frequencies (near ±

√
V ∗)

are significant. b̂ψ cannot be compactly supported, so we must choose some ε > 0 and consider

{ξ : |b̂ψ(ξ)| > ε} as being significant. We will call this set the ε-support of b̂ψ(ξ).

Theorem 4.2 With ψ and b as in Theorem 4.1, and with the assumptions ||ψ||q = 1 and 0 ≤ b(x) ≤
1, the length of the overall ε-support is bounded by

12||b′||p
ε

+ min

{
2

√
6||b′′||p

ε
,
6
√

2||b′′||p
ε
√
V ∗

}
+ min

{
2

√
6||V (x) − V ∗||p

ε
,
6
√

2||V (x) − V ∗||p
ε
√
V ∗

}
. (26)

Proof: To compute the ε-support of our bounds, we compute the (ε/3)-support of the three
terms in Theorem 4.1 and take the union. For the (V − V ∗)b term we have

||V (x) − V ∗||p
|V ∗ − ξ2| ≥ ε

3
(27)

when √
V ∗ − 3||V (x) − V ∗||p

ε
≤ |ξ| ≤

√
V ∗ +

3||V (x) − V ∗||p
ε

(28)

which is a set of length

2

(√
V ∗ +

3||V (x) − V ∗||p
ε

−
√
V ∗ − 3||V (x) − V ∗||p

ε

)
. (29)

When V ∗ ≤ 3||V (x) − V ∗||p/ε we drop the second term. This length is bounded by

min

{
2

√
6||V (x) − V ∗||p

ε
, 6
√

2
||V (x) − V ∗||p

ε
√
V ∗

}
. (30)

This second bound is only useful when V ∗ ≥ 3||V (x) − V ∗||p/ε, so we call it a ‘high frequency’
bound.

Similarly, for the b′′ term, we have a set of length

2

(√
V ∗ +

3||b′′||p
ε

−
√
V ∗ − 3||b′′||p

ε

)
≤ min

{
2

√
6||b′′||p

ε
,
6
√

2||b′′||p
ε
√
V ∗

}
. (31)

The b′ term behaves differently, however.

2|ξ|||b′||p
|V ∗ − ξ2| ≥

ε

3
(32)

on a set of length
12||b′||p

ε
.¤ (33)

Remark: The b′ term yielded an ε-support of length 12||b′||p/ε. We may be able to improve
this by applying Theorem 4.1 again, but we will always be left with a term which, like this one, is
independent of V and V ∗. This term gives a minimum on the length of the ε-support, and can be
viewed as a manifestation of the uncertainty principle.

4 COMPRESSION RATES 11

4.1.3 Number of Terms

Up to now we have been considering the Fourier transform b̂ψ. Since we are actually on an interval,

it makes sense to sample b̂ψ and consider the Fourier series. Instead of considering the length of the
ε-support as our measure of localization, we consider the number of Fourier coefficients above ε.

Definition 4.3 The cost (or ε-cost) of an expansion is the number of Fourier coefficients above ε.

For our application we choose p = ∞ and q = 1. We assumed earlier that ||ψ||q = 1. Actually,
ψ will be a basis element, and so have ||ψ||L2[0,1] = 1. We formulate our theorem on cost for our
particular application because the scaling simplifies.

Theorem 4.4 With ψ and b as in Theorem 4.1, and with the assumptions ||ψ||2 = 1 and 0 ≤ b(x) ≤
1, the cost of expansion on an interval of length l is at most

2max

{
12||b′||∞

ε
,min

{
2

√
6||b′′||∞

ε
,
6
√

2||b′′||∞
ε
√
l2V ∗

}
,

min

{
2l

√
6||V (x) − V ∗||∞

ε
, l

6
√

2||V (x) − V ∗||∞
ε
√
V ∗

}}
. (34)

To deal with intervals of length l, we must adjust our previous bounds. We first note that we
can bound ||ψ||L1[x,x+l] ≤ ||ψ||2||1||L2[x,x+l] =

√
l. When we convert from a Fourier transform to

Fourier series, we must also normalize the exponentials to be a basis on our interval, by dividing by√
l. These two factors of

√
l will cancel.

Converting the Fourier transform to Fourier series by sampling also means changing the ξ to k/l
where k is an integer. (We ignore a factor of 2π.) The cost on an interval of length l can thus be
computed from the ε-support as l · |ε-support|.

We must also shrink the bell to fit on this interval. We must consider b(x/l) and thus ||(b(·/l))′|| =
||b′||/l and ||(b(·/l))′′|| = ||b′′||/l2. Our new b′ cost bound is then

12||b′||∞
εl

l =
12||b′||∞

ε
(35)

which is unchanged. Thus any expansion on any interval has at least this cost (using this method).
From b′′ we have a new cost of

min

{
2

√
6||b′′||∞

ε
,
6
√

2||b′′||∞
ε
√
l2V ∗

}
. (36)

From V − V ∗ we now have

min

{
2l

√
6||V (x) − V ∗||∞

ε
, l

6
√

2||V (x) − V ∗||∞
ε
√
V ∗

}
. (37)

In this case both bounds have been multiplied by l and so improve linearly if we shrink l. Also note
that the norm is taken over a different interval. Thus if we shrink l, for some (different) choice of V ∗,
we can likely make ||V (x) − V ∗||∞ somewhat smaller. How much smaller we can make it depends
on our particular V (x). We will later use our knowledge of V (x) to choose appropriate l and V ∗.

Remark: The b′′ term is unimportant, since its cost in general can be dominated by the b′ term.
We will ignore its presence.

4 COMPRESSION RATES 12

4.2 The Intuition

We would like to have a simple method for computing the cost of expanding a ‘chirp’, i.e. a function
which has ‘instantaneous frequency’ some function ν(x). We graph ν(x) in the x × ξ phase plane.
On the phase plane a Local Cosine basis element is viewed as a rectangle of area 1 with x-support
on its base interval I shifted in ξ by its frequency. Intuitively, those boxes that intersect ν(x) should
correspond to Local Cosine elements that yield significant coefficients. If we set ∆ = maxI ν(x) −
minI ν(x) we can estimate the number of boxes by ∆|I| = ∆l. We must always intersect at least 1
box, however, so we need to consider max{∆l, 1}. See Figure 4.

6

-

ξ

x|I| = l

1/l

∆

ν(x)

Figure 4: Instantaneous frequency cost intuition.

In Section 4.1.2 we bounded the cost of expansion by

C

ε

||V (x) − V ∗||√
V ∗

. (38)

Assuming V (x) ≥ 0 let ν(x) =
√
V (x) and

√
V ∗ be the median value of

√
V (x). Then our cost is

C

ε

∣∣∣
√
V (x) −

√
V ∗
∣∣∣

∣∣∣
√
V (x) +

√
V ∗
∣∣∣

√
V ∗

≤ 2
C

ε

∣∣∣
√
V (x) −

√
V ∗
∣∣∣ . (39)

In Section 4.1.3 we determined that if the interval is of length l, our cost is multiplied by l, to yield
(2C/ε)l|

√
V (x) −

√
V ∗|. Again we let ∆ = maxI ν(x) − minI ν(x). The cost to expand on that

interval is bounded by (2C/ε)max{l∆, B}, where B is the minimal bell cost (||b′||). Our intuition
is therefore justified.

4.3 Associated Legendre Functions

If we consider the potential

V (φ) = (n+ 1/2)2 − m2 − 1/4

sin2 φ
(40)

on [0, π/2], ψ will be an Associated Legendre function of order m,
√

sinφP̃m
n (cosφ). We will even-

tually wish to take many derivatives of V (x) but the sinφ will introduce factors of cosφ and make

4 COMPRESSION RATES 13

the calculations unpleasant. Instead we can consider the potential

V (x) = (n+ 1/2)2 − m2 − 1/4

x2
(41)

which will yield Bessel functions. Qualitatively, these behave the same as the Associated Legendre
functions, and so we will have the same overall cost estimate. Making this rigorous would simply
introduce some factors of π. See Figure 5 for graphs comparing the behavior of an Associated
Legendre function and the corresponding Bessel function.

Figure 5:
√

sinφP̃ 20
60 (cosφ) and

√
rJ20(60r) on [0, π/2]

Remark: In the next few sections we will prove compression results for Associated Legendre
functions by proving them for Bessel functions. As a consequence, we also obtain a fast version of
the Hankel transform for f with compact support. (See [EMOT54, p.3].) The Hankel tranform is
defined as

Hνf(y) =

∫ ∞

0

f(r)Jν(ry)
√
rydr. (42)

4.3.1 Bessel Functions

We have made a simplification to consider the potential (41) on [0, 1]. ψ(x) is then the Bessel
function of order m,

√
xJm(nx). To simplify the following calculations further, we make a further

reduction to V (x) = n2 − (m/x)2. We will not use any algebraic properties of the values of m and
n, so this reduction is unimportant.

The tools we developed above give bounds on the cost (number of coefficients) for a given interval.
Our only real freedom is how we partition [0, 1]. Our total cost is the sum of the costs from each
subinterval. We would like to find the partition which minimizes our total cost.

Theorem 4.5 Let ψ be a solution to ψ′′ = (n2 − (m/x)2)ψ on N points in [0, 1], normalized so
||ψ||2 ≤ 1. Then there exists a partition of [0, 1] which yields total expansion cost less than

2
√
m

√
||b′||
ε

logN. (43)

The first part of our scheme is a stopping time argument. We fix a cost C to be the maximum
allowed cost. Given an interval, if its cost is less than C we keep it; otherwise split it in two and
pass them to the next stage. Start with [0, 1] and continue until stopped. In deciding whether we
stop there are two considerations. First is the bell cost. If we split an interval in two, our non-bell
cost (37) shrinks by a factor of at least two, but the bell cost (35) is unchanged. We will stop if and

4 COMPRESSION RATES 14

only if C is greater than the bell cost ||b′||/ε. The second consideration is that we will be working
on a finite number of points N. Once the number of points in an interval is less than C, it cannot
cost more than C in any case. We will also use this fact when we count intervals.

Before trying to count the intervals, we consider the structure of the partition we expect to be
chosen. When x < m/n, ψ decays rapidly and smoothly and can be expanded into Local Cosine
with negligible cost. We thus consider this a ‘nothing’ interval and only worry about [m/n, 1]. For
a fixed interval length l = 2−j there will be some set in [m/n, 1] such that the interval [x, x+ l] has
cost less than C. Using the high frequency bound in (30), we have cost

≤ 2−j ||V − V ∗||
ε
√
V ∗

. (44)

Since V is concave down, we can bound ||V −V ∗|| on [x, x+2−j] by 2−jV ′(x), choosing V ∗ = V (x).
We then have cost

≤ 2−2jm2

εx2
√

(nx)2 −m2
. (45)

Note that this cost shrinks as x increases. The ‘good’ set (Gj) for size 2−j is thus some interval
[xj , 1]. The remaining interval [m/n, xj] is the ‘bad’ set (Bj). See Figure 6.

0 1m/n xj

Bj Gj

γj

δj

Figure 6: Good and bad intervals for size 2−j

It will be most efficient if we break the interval Bj−1∩Gj = [xj , xj−1] into intervals of size 2−j . It
will take 2j |Bj−1∩Gj | such intervals, yielding cost C2j |Bj−1∩Gj |. To estimate |Bj−1∩Gj |, we first
dominate it by |Bj−1| = xj−1 −m/n = γj−1. Setting our cost bound equal to C and manipulating,
we find

2−jm√
Cε

= xj((xjn)2 −m2)1/4 = (γj +m/n)(γjn)1/4(γjn+ 2m)1/4. (46)

It is difficult to solve for γj , but it will be dominated by δj , which satisfies

2−jm√
Cε

= δ
3/4
j (m/n)1/4(δjn)1/4m1/4 = δjm

1/2, (47)

which means δj = 2−j
√
m/Cε.

We can now bound [xj , xj−1] by δj−1. Our cost for this interval using subintervals of size 2−j is
thus at most

2−j+1

√
m

Cε
· 2j · C = 2

√
m

√
C

ε
. (48)

As noted above, j ≤ logN and thus we can sum over j and bound our overall cost by 2
√
m
√
C/ε logN .

Plugging in the minimal cost per interval ||b′||/ε, we obtain total cost

2
√
m

√
||b′||
ε

logN. (49)

Remark: According to these estimates, our best results are obtained by shrinking the intervals
until the non-bell cost equals the bell cost. Since the bell cost is independent of the interval size,
this indicates that our choice to have all intervals of the same cost should be optimal.

4 COMPRESSION RATES 15

4.3.2 Higher Order Estimates

The above estimates are fine, but depend on ε like ε−1. Here we apply Theorem 4.1 repeatedly to
get higher order decay in ξ, and thus more benign dependence on ε.

If we apply Theorem 4.1 one time, we convert a single term into 3 terms. One of these has
multiplicity 2, so we’ll consider there to be 4 terms. If we apply the theorem k times, we expect
4k terms. Along the way we take derivatives of products and powers, which will give us further
multiplicities. In going from step k to step k + 1, we multiply by at most (2k)(2k + 1). Our total
number of terms, including multiplicities, is thus bounded by 4k(2k)!. Within some terms we will
also generate a factor of k!. We account for this now so that when it appears later, we can ignore
it. We therefore proceed as if there were 4k(2k)!k! terms.

Each term has the following form:

|ξ|a · ||b(b)|| · l2k−(a+b) · ||V − V ∗||c · |V (1)|d1 · |V (2)|d2 · · ·
|ξ2 − l2V ∗|k (50)

with a + b + 2c +
∑
di(i + 2) = 2k, a ≤ k, and if a = k then b = k. We wish to know when this

is greater than ε/4k(2k)!k!. We will separate each term into k factors and determine when each is
greater than (ε/4k(2k)!k!)1/k ≈ ε1/k/k3 = η. (We use Stirling’s formula n! ≈

√
2πnn+1/2e−n.) The

η-support of each factor is two intervals, containing the points ±l
√
V ∗. The union of these intervals

is essentially the largest pair of intervals, and will contain the intervals when our term is greater
than ε/4k(2k)!k!.

Following Section 4.3.1, we fix a sub-cost C and determine the smallest x which, given an l, yields
cost C for this factor. We will have some factors whose cost is independent of l and x (and V (x))
and these will act as a minimum on C. When we can affect the cost with l, we will show that l is a
linear function of x. It may have x-intercept at 0, in which case its slope is independent of m and
n. It could instead have x-intercept at m/n, in which case its slope depends on m like m−1/2. As
we saw in Section 4.3.1 and using (48), a linear dependence between l and x (or (x−m/n)) means
our total cost will depend on N like logN . The total cost also depends on the slope of the line like
its inverse. For us this is either independent of m or depends on m like

√
m. Given this collection

of lines, we can choose a line which is under all of them on [m/n, 1], and the inverse of its slope will
be O(

√
m). This line gives us a partition of [m/n, 1] for which all factors obey the sub-cost limit C.

A closer examination of its slope will tell us our dependence on C, ε, etc.
We organize the various types of factors in tables. Table 1 contains the basic factors, the bound

used for that factor, the corresponding line, and the total cost if that was the dominant line. The
bounds are analogous to those in (30) and (33). The lines are found by either setting the bound
equal to C and solving for l, or by using the δ construction as in (47). The total cost is found by
taking the inverse of the slope and multiplying by C. We will also use the shorthand

bk = sup
1≤j≤2k

||b(j)||1/j . (51)

Next, in Table 2, we list the more complicated, composite terms and show how to factor them.
The terms of type (58), (62), and (63) have factorials, but these were accounted for at the beginning
and incorporated into η, and so can be ignored.

For large m, the worst total is in terms of type (55) and is
√
mC/η. The factors of type (52)

and (53) give us bounds independent of l, and thus tell us we should choose C = bk/η. Plugging
in C = bk/η and η = ε1/k/k3 yields

√
mbkk

3ε1/k. To estimate bk, we note b(j) should have j
peaks, about 1/j apart. The height of these peaks can be found from the height of b(j−1)’s peaks
by multiplying by the previous separation (1/(j − 1)) and an extra factor of two. Inductively this
gives |b(j)| ∼ 2jj! and so bk ∼ 4k. Plugging in this estimate yields cost

√
mk7/2ε1/k. Choosing

k = log(1/ε) gives us a compression cost of O(
√
m logN(log ε)7/2).

4 COMPRESSION RATES 16

Factor Bound used Line Total cost

|ξ|bk
|ξ2 − l2V ∗|

bk
η

(52)

b2k
|ξ2 − l2V ∗|

bk√
η

(53)

|ξ|lx−1

|ξ2 − l2V ∗|
lx−1

η
l = ηCx

1

η
(54)

l3m2x−3

|ξ2 − l2V ∗|
l2m2

ηx2
√

(nx)2 −m2
l =

√
Cη

m

(
x− m

n

) √
mC

η
(55)

lx−1

|ξ2 − l2V ∗|

√
lx−1

η
l = ηC2x

1

Cη
(56)

l2x−2

|ξ2 − l2V ∗|
lx−1

√
η

l =
√
ηCx

1√
η

(57)

Table 1: Basic factors in the higher order estimates.

Remark: The estimate bk ∼ 4k is far from rigorous. In applications, we use bells which are
optimized (Section 5.1.2) using a method that does not look at derivatives of the bell. We have
found these bells to be highly efficient.

4.3.3 One Dimensional Compression Conclusion: O(N 5/2 logN(log ε)7/2)

We concluded above that we can compress each Associated Legendre function into at most

O(
√
m logN(log ε)7/2) ≤ O(

√
N logN(log ε)7/2) (64)

coefficients. We must add this count over N values of m and N values of n. For the complete
Spherical Harmonic transform, this yields a bound of

O(N5/2 logN(log ε)7/2). (65)

4.4 Two Dimensional Compression: O(N 2 log N(log ε)7)

The compression scheme described above involves compressing
√

sinφP̃m
n (cosφ) as a function of φ,

and so is one-dimensional. We are actually applying a matrix of
√

sinφP̃m
n (cosφ) (m fixed) and

so can consider this as a function of both n and φ and compress in both directions. In the n
direction we don’t have a differential equation, but instead a recurrence relation (see Section 5.1.1).
If we model with Bessel functions, however, we are dealing with

√
nxJm(nx) for which n and y are

interchangeable. Setting y = n/N we consider
√
yxNJm(yxN) on (x, y) ∈ [0, 1]× [0, 1] which is fully

symmetric. Obtaining rigorous results for the Associated Legendre functions from results for Bessel
functions in the n variable seems difficult, but we expect the behavior to be the same. We state the
result for Bessel functions:

Theorem 4.6 Let ψ(x, y) =
√
yxNJm(yxN) on the unit square, normalized so ||ψ(·, y)||2 ≤ 1.

There exists a partition into squares with total expansion cost bounded by

O(N logN(log ε)7). (66)

4 COMPRESSION RATES 17

Term Factorization

|ξ|p · ||V (p)|| · lp+2

|ξ2 − l2V ∗|p+1
=

m2l3x−3

|ξ2 − l2V ∗|
|ξ|

|ξ2 − l2V ∗|

(|ξ|lx−1

|ξ2 − l2V ∗|

)p−1

(p+ 2)! (58)

||V − V ∗||
|ξ2 − l2V ∗| ≤

m2l3x−3

|ξ2 − l2V ∗| (59)

|ξ|p||b(p)||
|ξ2 − l2V ∗|p ≤

(|ξ|bk
|ξ2 − l2V ∗|

)p

(60)

|ξ|p||b(p+q)||
|ξ2 − l2V ∗|p+q/2

≤
(|ξ|bk
|ξ2 − l2V ∗|

)p(
b2k

|ξ2 − l2V ∗|

)q/2

(61)

lp+2||V (p)||
|ξ2 − l2V ∗|1+p/2

=
m2l3x−3

|ξ2 − l2V ∗|
lx−1

|ξ2 − l2V ∗|

(
l2x−2

|ξ2 − l2V ∗|

)p/2−1

(p+ 2)! (62)

|ξ|plp+q+2||V (p+q)||
|ξ2 − l2V ∗|p+1+q/2

=
m2l3x−3

|ξ2 − l2V ∗|
|ξ|

|ξ2 − l2V ∗|

(|ξ|lx−1

|ξ2 − l2V ∗|

)p−1(
l2x−2

|ξ2 − l2V ∗|

)q/2

(p+ q + 2)!

(63)

Table 2: Composite terms in the higher order estimates.

In Section 4.1 we constructed tools for one dimensional compression and in Section 4.3 we applied
them. Here we will try to use these tools and techniques as much as posssible and only highlight
the differences.

We are allowed to choose any partition of the unit (x × y) square into rectangles, but for now
we restrict ourselves to squares of sidelength 2−j . We first note that the turning point occurs when
x = m/yN . Anything above or to the left of this hyperbola is either rapidly decaying or zero, so we
don’t have to worry about this region. (Recall that since M is a matrix, the x axis points down.)

First we fix a sub-cost C2 as our goal on the subsquares. Fixing j, we can break the unit square
into three regions. The first is a ‘good’ region for the size 2−j , denoted Gj , where the cost is less
than C2. The second is a ‘bad’ region (Bj) where the bounds fail, and the third is a ‘nothing’ region
beyond the turning point. We break the unit square into the nothing region and G0∪∞

j=0 (Bj∩Gj+1).
To compute the number of squares needed for a region, we can compute the area of that region and
divide it by the area of the squares used. Thus for the region Bj ∩Gj+1 we need |Bj ∩Gj+1| · 22j+2

squares. Multiplying by C2 will give the number of coefficients. Our problem is now reduced to
estimating the area of these regions.

The first step is to assess the cost associated with the square [x, x+2−j]× [y, y+2−j]. This cost
will be bounded by

∣∣∣∣∣∣
⋃

0≤t≤2−j

2−jε-supp
(
(b[x,x+2−j]ψ

m
y+t(·))̂

)
∣∣∣∣∣∣
·

∣∣∣∣∣∣
⋃

0≤s≤2−j

2−jε-supp
(
(b[y,y+2−j]ψ

m
(·)(x+ s))̂

)
∣∣∣∣∣∣

(67)

If we require this to be less than C2 it suffices to have each factor less than C. When computing
the ε-supports, the only dependence on m was through ||V (x) − V ∗||. Recalling now that V also
depends on y, we instead consider sup |Vy(x) − V ∗| taken over the square [x, x+ 2−j] × [y, y + 2−j]
with V ∗ independent of y. The cost computed using this will dominate the first factor in (67).

4 COMPRESSION RATES 18

For our particular potential, Vy(x) = (yN)2 −m2/x2, we can choose V ∗ = (yN)2 −m2/x2 and
achieve the supremum with

Vy+2−j (x+ 2−j) − V ∗ = y2N2 + 2y2−jN2 + l2N2 − m2

(x+ 2−j)2
− yN2 +

m2

x2
(68)

= m2 2−j(2x+ 2−j)

x2(x+ 2−j)2
+ 2y2−jN2 + l2N2. (69)

We will consider the costs from these three terms separately. We will show the three bad regions
shrink at least at a certain rate. The analysis of the second factor in (67) yields the same rate, and
so the union of all of these regions also has this same rate. We then use |Bj | to dominate |Bj ∩Gj+1|.

The first term gives cost

m22−j(2x+ 2−j)

x2(x+ 2−j)2
2−j

√
(yN)2 −m2/x2ε

. (70)

We set this equal to C, define γ = x−m/yN and manipulate to find

m2(2−j)2

Cε
=

(γ + 2−j +m/yN)2
√
γyN

√
γyN + 2m

2γ + 2−j + 2m/yN
. (71)

Following the argument from Section 4.3.1, we note it is sufficient to use δ such that

m2(2−j)2

Cε
= δ1/2

(
m

yN

)1/2
m

N

√
δyN

√
m, (72)

which means δ = N(2−j)2/Cε will suffice. This δ = δj bounds the thickness of the strip Bj . Since
this strip has length at most 1, δj also bounds its area. Our cost for the region Bj ∩ Gj+1 is thus
less than δ(2−j)−2 = NC/ε. Since a square must contain a point, j ≤ logN , and we can add our
cost over logN strips to obtain total cost (C/ε)N logN . See Figure 7 for a schematic of the different
regions and Figure 2 for the original matrix.

-

?1

0
0 1

x

y

Gj

Bj

m/N

m/N

δ

Figure 7: The good and bad regions for a certain sized square.

The second term gives cost

y2−jN2 2−j

√
(yN)2 −m2/x2ε

. (73)

5 NUMERICAL RESULTS 19

We set this equal to C, define γ = x−m/yN and manipulate to find

(2−j)2yN2

Cε
=

√
γyN

√
γyN +m2

(γ +m/yN)2
. (74)

It will suffice to take δ such that
(2−j)2yN2

Cε
= δyN (75)

and so δ = (2−j)2N/Cε will work. This yields NC/ε as the cost for a strip and total cost
(C/ε)N logN .

The third term gives cost

(2−j)2N2 2−j

√
(yN)2 −m2/x2ε

. (76)

We set this equal to C, define γ = x−m/yN and manipulate to find

(2−j)3N2

Cε
=

√
γyN

√
γyN +m2

(γ +m/yN)2
. (77)

It will suffice to take δ such that
(2−j)3N2

Cε
= δyN (78)

which means δy = (2−j)3N/Cε will work. Anticipating the results from the analysis of the first
term in the compression in y, we assume y ≥ δ + m/x ≥ δ (for the same δ) and so we can take
δ2 = (2−j)3N/Cε and

δ =
(2−j)2N√

Cε

1√
2−jN

. (79)

Noting 2−j ≥ 1/N and so 1/
√

2−jN < 1, we can take δ = (2−j)2N/
√
Cε, yielding total cost

(C/ε)N
√
Cε.

As in the one dimensional case, we can use Theorem 4.1 iteratively to obtain higher order decay.
Excluding the case (55) dealt with above, all the basic factors in Table 1 yielded lines of the form
x = lA = 2−jA with A independent of m, n, y, etc. These lines give us strip cost of A/2−j and

total cost A
∑log N

j=0 (2−j)−1 = AN . We expect ε dependence like ((log ε)7/2)2. For each m we can

compress into O(N logN(log ε)7) coefficients and so have total coefficient count

O(N2 logN(log ε)7). (80)

5 Numerical Results

The proof of the theoretical result of the fast transform for Spherical Harmonics is now complete.
When attempting to implement the algorithms, several issues arise. This section first gives the
solutions to those problems which proved most troublesome. It then gives the results of numerical
testing on an implementation of the algorithms from Section 3.

Our implementation was mainly for diagnostic purposes. When evaluating run times we at-
tempted an efficient implementation, but our main goal was to provide a fair comparison with the
direct method. We seek to answer the following questions:

1. Does the cost of expansion agree with the prediction in Section 4?

(a) As a function of N?

(b) As a function of ε?

5 NUMERICAL RESULTS 20

2. When are our algorithms better than the direct method, specifically:

(a) At what N do they become faster?

(b) Are there other considerations we need to take into account?

3. Are our algorithms stable, and how large are the errors?

To summarize the results:

1. The one dimensional algorithm performs better than predicted, as a function of both N and
ε. The two dimensional algorithm performs well in ε, but poorly in N , in the range of N we
tested.

2. The one dimensional algorithm becomes faster than the direct method at N = 128. At this
size, the overhead cost for full adaptation is too great, so we had to modify our adaptation
process. By N = 512, we have improved run times by a factor of three.

3. Since we perform only orthogonal operations, the one dimensional algorithm is stable and has
errors about size ε.

5.1 Computational Details

5.1.1 Generating the P̃m
n ’s

Before we compress a matrix of Associated Legendre functions (or ψm
n ’s) we must be able to con-

struct the matrix. Let P̃
(m,m)
k be the L2 normalized Jacobi Polynomial. We can construct the L2

normalized Associated Legendre functions for m ≥ 0 as:

P̃m
n (cosφ) = (sinφ)mP̃

(m,m)
n−m (cosφ) (81)

and for m < 0 using P̃m
n (cosφ) = P̃−m

n (cosφ). Using the recurrence relation and normalization

from Szegö, [Sze75, p.68,71] we can construct P̃
(m,m)
k with the recurrence initialized by

P̃
(m,m)
−1 (x) ≡ 0 (82)

P̃
(m,m)
0 (x) =

√
Γ(2m+ 2)

2

1

2mΓ(m+ 1)
=

1√
2

m∏

j=1

√
1 +

1

2j
(83)

and with general term

P̃
(m,m)
k (x) = 2xP̃

(m,m)
k−1 (x)

(
1 +

m− 1/2

k

)1/2(
1 − m− 1/2

k + 2m

)1/2

− P̃
(m,m)
k−2 (x)

(
1 +

4

2k + 2m− 3

)1/2(
1 − 1

k

)1/2(
1 − 1

k + 2m

)1/2

. (84)

For large m this recurrence is poorly conditioned, especially when m ≤ n ≤ 2m. The solu-
tion we want corresponds to the larger eigenvalue, however, so the conditioning acts in our fa-
vor. The recurrence is also highly prone to underflows. We fix this by using scientific notation,√

sinφP̃m
n (cosφ) = A2B , 1/2 < A ≤ 1, B ∈ Z, and storing A and B separately.

5 NUMERICAL RESULTS 21

5.1.2 Bells

In determining the order of our algorithm, the bell used is unimportant, except perhaps that it
have a few bounded derivatives. In determining the constants involved, however, it it crucial.
We use bells developed by Matviyenko [Mat96], which are optimized for a given precision. These
bells are bi-orthogonal, so we expand using the bells {bi(x)} and reconstruct with the dual bells
{bi(x)/

∑
j b

2
j (x)}. The use of these bi-orthogonal bells has condition number

√
2, so we will pretend

as though we are using orthogonal bells.

5.1.3 Searches

In Section 4.3 we developed a theory which said we can achieve a certain amount of compression if
we can find an optimal partitioning of the interval. We find the optimal partition by searching, and
here present fast searches.

First consider the one dimensional partition from Section 4.3.1. We know that the interval size
should grow slowly as we move to the right, so we explicitly restrict to partitions where an interval’s
left neighbor is either the same size or one size smaller. Our compression bounds only hold if all our
bells are dilates of a single bell. With our restricted partition we can have good (broadly supported)
bells and yet only use two different bells. When an interval’s left neighbor is of the same size, we
use a ‘full bell’, which will be supported on the double of the interval. When the left neighbor is
half the size, we adjust the left half of our bell to be compatible with the full bell of the smaller
neighbor, creating an ‘asymmetric bell’.

We place the root node to the left of our interval. It has log(N) children, which correspond to
the leftmost dyadic intervals. Now working left to right, we assign each node children corresponding
to allowed right neighbors of the current interval. (See Figure 8.) The cost of a partition is the cost
of a path from the root node to a leaf node (right edge), so we want to find the path of least cost.
For our purposes, the cost is the number of coefficients above ε, but the search generalizes to other
cost functions.

j

j j

j j j j

j j j j j j j j

z

z z z

m

Figure 8: The one dimensional search graph. Empty circles represent full bells and solid circles
asymmetric bells.

The generic decision step is as follows: We assume the current node’s children contain the minimal
cost of a path from them to the right. We compare the costs for the symmetric child of the same size
and the asymmetric child of the next larger size (if it exists), and add the smaller to the symmetric
and asymmetric costs of the current node. To each box associate its center. Process the boxes in
order of the x coordinate of their center, starting at the right. This reduces us to the children of
the root node, which we compare by hand. It costs 2N log2

2N to compute the coefficients and 4N
to run the search.

For the two dimensional compression scheme in Section 4.4 we also require a search algorithm.
Our use of double bells allows us to use an algorithm for determining the best partition into dyadic

5 NUMERICAL RESULTS 22

rectangles developed by Nick Bennett [Ben97]. The search using squares only is given in [Wic94,
p.299]. See also [TV96] for a similar algorithm.

5.2 Coefficient Counts

5.2.1 One Dimensional

First we consider the coefficents counts (costs) obtained from the one dimensional compression
scheme from Section 4.3. These coefficients would be used in the one dimensional algorithm in
Section 3.2. Our algorithm to obtain the counts is as follows:

1. Fix some ε to serve as a cutoff, and the number of points N . This ε determines which bell to
use, as in Section 5.1.2.

2. Loop through 0 ≤ m < N and m ≤ n < N . For each value do a best non-decreasing dyadic
partition search as in Section 5.1.3 in φ to ψm

n (φ) on [0, π/2]. This search gives us a cost for
each (m,n) which we add to a running total.

If we did no compression, we would be adding over N/2 points, 0 ≤ m < N , and m ≤ n < N ,
for total cost N2(N +1)/4. Dividing this number by the number of coefficients we kept gives us the
compression ratio. Our prediction in Section 4.3.3 is that the number we keep for each Associated
Legendre function should be O(

√
N). To test this, we divide the number kept by

√
NN(N + 1)/2

to obtain the ‘effective constant’. The results for this method are contained in Table 3.

ε = 10−6 ε = 10−12

N Ratio Constant Ratio Constant

32 1.09 2.59 1.00 2.82

64 1.32 3.04 1.07 3.71

128 1.67 3.38 1.30 4.34

256 2.18 3.67 1.64 4.88

512 3.03 3.74 2.08 5.44

1024 4.39 3.65 2.81 5.68

2048 *6.47 *3.49 *3.97 *5.70

4096 *9.67 *3.31 *5.51 *5.81

Table 3: Compression ratios and effective constants for compression in φ only. A * indicates an
estimate by sampling in m.

Preliminary timing results indicated that the cost of the LCTs at multiple scales is prohibitive
at N ≈ 256. As an alternative to using multiple scales, we can choose a single partition for each m
and parity. (See Section 5.3.2.) In Table 4 we give compression ratios and effective constants for
this method.

5.2.2 Two Dimensional

Next, in Table 5, we consider the two dimensional compression scheme, as in Section 4.4. Our
algorithm is now:

1. Fix some ε to serve as a cutoff, and the number of points N . This ε determines which bell to
use, as in Section 5.1.2.

5 NUMERICAL RESULTS 23

ε = 10−6 ε = 10−12

N Ratio Constant Ratio Constant

32 1.09 2.59 1.00 2.82

64 1.28 3.12 1.07 3.71

128 1.59 3.56 1.28 4.41

256 2.07 3.86 1.56 5.14

512 2.89 3.91 1.97 5.75

1024 4.26 3.75 *2.69 *5.94

2048 *6.31 *3.59 *3.88 *5.83

Table 4: Compression ratios and effective constants for compression in φ only using a single partition
per m (and parity). A * indicates an estimate by sampling in m.

2. Loop through 0 ≤ m < N . For each value do the two dimensional search (Section 5.1.3) to
(ψm

n (φ)) as a function of φ and n on [0, π/2]× [0, N]. We allow the search to choose not to try
to compress any particular rectangle in either direction. The search produces a cost for each
m which we add to a running total.

We compute the compression ratios and effective constants as above. The ‘constant’ is computed
by dividing by

√
NN(N + 1)/2. This is not the rate predicted for this algorithm, but gives us a

good way to compare it with the one dimensional algorithm. For the two dimensional algorithm to
work as predicted, we want the constant to decrease at a rate like 1/

√
N or perhaps logN/

√
N .

ε = 10−6 ε = 10−12

N Ratio Constant Ratio Constant

32 1.13 2.50 1.04 2.72

64 1.31 3.05 1.13 3.55

128 1.59 3.55 1.32 4.30

256 1.98 4.03 1.55 5.16

512 2.60 4.35 1.90 5.96

1024 3.56 4.49 *2.39 *6.69

Table 5: Compression ratios and effective constants (using one dimensional rates) for compression
in φ and n. A * indicates an estimate by sampling in m.

The two dimensional algorithm is not performing very well in this range of N . The analysis in
Section 4.4 predicts the constant in the two dimensional algorithm to be the square of that in the
one dimensional. The double bells will give an extra factor of 4 inefficiency. At smaller N , other
constraints enable us to still have compression, but we don’t expect to see the predicted rate until
much larger N . Ad hoc methods allow us to outperform the one dimensional compression, but the
effect is marginal: a 25% reduction in coefficients at N = 1024. At some point in the future, this
algorithm will have to be revisited.

5.3 Program Timings

The coefficient counts in the previous section are essentially implementation-invarient. When trying
to compare the speed of these algorithms to the direct method, there are implementation-dependent
and hardware-dependent factors. We attempt here to give fair comparisons.

5 NUMERICAL RESULTS 24

All programs were implemented in ANSI C, compiled with cc -O -native -dalign and run
on a Sun Ultra2 with UltraSPARCII cpu running at 300Mhz. The timing mechanism is based on
internal system queries as to how much CPU time has been used. The times given are the average
over multiple runs in an attempt to give two significant digits.

5.3.1 The Direct Method

We first time the direct method and those components which are common to both the direct and
fast methods. We deal with the collection of reduced evaluation problems using parities, as stated
in Section 2.3. These results appear in Table 6. The component operations are:

Reflect Using parities, reflect the even and odd parts of our function to regain the function itself.

Transpose Transpose the matrix in φ× θ.

FFTθ Perform the N real FFTs of length 2N in the θ variable.

Total (C) The total of the common elements: Reflect + Transpose + FFTθ. Abbreviated as C.

Apply The time to apply the matrices in φ for all m.

Apply+C The total cost for a transform using the direct method.

Common Direct

N Reflect Transpose FFTθ Total (C) Apply Apply+C

64 .00039 .00042 .0021 .0029 .0062 .0091

128 .0015 .0015 .0094 .012 .065 .077

256 .011 .035 .042 .088 .60 .69

512 .043 .19 .19 .42 *8.5 *8.9

Table 6: Timing for common elements and the direct method, in seconds. A * indicates an estimate
by sampling in m.

Remark: We expect times for the direct method to grow by a factor of 8 when we double N ,
but they are growing faster than that. The number of operations is growing exactly by 8, so the
discrepancy should be in system dependent factors such as pipelining, cache size, and the nuaces of
compiler optimization. We cannot hope to account for these factors, so we instead tried to structure
the direct and fast algorithms as much alike as possible, to provide a fair comparison.

5.3.2 The One Dimensional Algorithm

For the values of N we have tested, the one dimensional algorithm is performing best in coefficient
counts, so we use it for our performance testing. Again we consider the collection of reduced
evaluation problems using parities, as stated in Section 2.3. Preliminary timings demonstrated that
at N of size around 256, performing log2N FFTs takes far longer than applying the direct method.
We are forced to perform the equivalent of one FFT of length N for each scale we allow. As noted
in Table 4, at N this size, choosing a single partition for each m (and even/odd) hardly hurts the
compression rates. Since this greatly reduces the number of FFTs, it is a good trade off. As N
becomes larger, FFTs become relatively cheap, and it will be worthwhile to allow more partitions.
It is possible to modify the search algorithm in Section 5.1.3 to take the cost of additional FFTs
into account when choosing the partitions.

The times for the one dimensional algorithm using a single partition per m and parity are shown
in Table 7. The component operations are:

REFERENCES 25

AC (Apply Compressed) Apply the matrix in compressed form for all m.

LCTs Perform the Local Cosine transforms to return to normal coordinates.

Total AC + LCTs. Abbreviated as F6 when ε = 10−6 and F12 when ε = 10−12. This takes the
place of the Apply step in Table 6.

F6+C, F12+C The total cost for a transform using this method.

Fast at ε = 10−6 Fast at ε = 10−12

N AC LCTs Total(F6) F6+C AC LCTs Total(F12) F12+C

64 .0058 .0036 .0093 .012 .0067 .0036 .011 .013

128 .042 .015 .057 .069 .055 .015 .070 .082

256 .28 .072 .35 .44 .37 .066 .43 .52

512 1.6 .28 1.9 2.3 *2.5 .28 *2.8 *3.2

Table 7: Timing for the one dimensional algorithm, in seconds, using a single partition per m (and
parity). A * indicates an estimate by sampling in m.

To ease the comparison of the direct and fast methods, we give ratios of run-times in Table 8.

ε = 10−6 ε = 10−12

N Apply/F6 (Apply+C)/(F6+C) Apply/F12 (Apply+C)/(F12+C)

64 0.67 0.76 0.56 0.70

128 1.14 1.12 0.92 0.93

256 1.71 1.57 1.40 1.33

512 *4.47 *3.87 *3.04 *2.78

Table 8: Ratios of run times of the one dimensional algorithm versus the direct method. A *
indicates an estimate by sampling in m.

References

[AR91] Bradley Alpert and Vladimir Rokhlin. A fast algorithm for the evaluation of Legendre
expansions. SIAM J. Sci. Statist. Comput., 12(1):158–179, January 1991.

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions, vol-
ume 55 of Applied Math Series. National Bureau of Standards, 1964.

[BCG93] B. Bradie, R. Coifman, and A. Grossmann. Fast numerical computations of oscillatory
integrals related to acoustic scattering, i. Appl. Comput. Harmon. Anal., 1:94–99, 1993.

[BCR91] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algo-
rithms i. Comm. Pure Appl. Math., 44:141–183, 1991.

[Ben97] Nicholas N. Bennett. Signal Analysis of Chirps: Detection, Oscillatory Kernels, and
Anisotropic Wavelets. PhD thesis, Yale University, New Haven CT, May 1997.

REFERENCES 26

[BO78] Carl M. Bender and Steven A. Orszag. Advanced mathematical methods for scientists
and engineers. International series in pure and applied Mathematics. McGraw–Hill, New
York, 1978.

[Bro85] Timothy M. Brown. Solar rotation as a function of depth and latitude. Nature,
317(17):591–594, October 1985.

[CM91] Ronald R. Coifman and Yves Meyer. Remarques sur l’analyse de Fourier à fenêtre. C.
R. Académie des Sciences, 312(1):259–261, 1991.

[DEH89] Thomas L. Duvall, Jr., Mark Elowitz, and Frank Hill. A test of a modified algorithm for
computing spherical harmonic coefficients using an fft. J. Comput. Phys., 80:506–511,
1989.

[DH94] James R. Driscoll and Dennis M. Healy, Jr. Computing Fourier transforms and convo-
lutions on the 2–sphere. Adv. in Appl. Math., 15:202–250, 1994.

[Dil85] Gary A. Dilts. Computation of spherical harmonic expansion coefficients via fft’s. J.
Comput. Phys., 57:439–453, 1985.

[EMOT54] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Tables
of Integral Transforms, volume 2 of Bateman Manuscript Project. McGraw-Hill, New
York, 1954.

[FPTV92] B. Flannery, W. Press, S. Teukolsky, and W. Vettering. Numerical Recipies in C. Cam-
bridge University Press, Cambridge UK, 2nd edition, 1992.

[Hob31] E. W. Hobson. The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York,
1931.

[LL77] L. D. Landau and E. M. Lifschitz. Quantum Mechanics (Non–relativistic Theory). Perg-
amon Press, New York, 3rd edition, 1977.

[Mat96] Gregory Matviyenko. Optimized local trigonometric bases. Appl. Comput. Harmon.
Anal., 3(4):301–323, 1996.

[Moh97] Martin J. Mohlenkamp. A Fast Transform for Spherical Harmonics. PhD thesis, Yale
University, New Haven CT, May 1997.

[Ors86] Steven A. Orszag. Fast eigenfunction transforms. Advances in Mathematics Supplemen-
tary Studies, 10, 1986.

[SW71] Elias Stein and Guido Weiss. Fourier Analysis on Euclidean Spaces. Princeton University
Press, Princeton NJ, 1971.

[Sze75] Gabor Szegö. Orthogonal Polynomials. AMS, Providence, RI, 4th edition, 1975.

[TV96] Christoph M. Thiele and Lars F. Villemos. A fast algorithm for adapted time–frequency
tilings. Appl. Comput. Harmon. Anal., 3(2):91–99, 1996.

[Wic94] Mladen Victor Wickerhauser. Adapted Wavelet Analysis from Theory to Software. A.K.
Peters, Wellesley, MA, 1994.

