You will encounter many mathematical symbols during your math courses. The table below provides you with a list of the more common symbols, how to read them, and notes on their meaning and usage. The following page has a series of examples of these symbols in use.

Symbol	How to read it	Notes on meaning and usage
$a=b$	a equals b	a and b have exactly the same value.
$\begin{aligned} & a \approx b \text { or } \\ & a \cong b \end{aligned}$	a is approximately equal to b	Do not write $=$ when you mean \approx.
$P \Rightarrow Q$	P implies Q	If P is true, then Q is also true.
$P \Leftarrow Q$	P is implied by Q	If Q is true, then P is also true.
$\begin{aligned} & P \Leftrightarrow Q \text { or } \\ & P \text { iff } Q \end{aligned}$	P is equivalent to Q or P if and only if Q	P and Q imply each other.
(a, b)	the point $a b$	A coordinate in \mathbb{R}^{2}.
(a, b)	the open interval from a to b	The values between a and b, but not including the endpoints.
[a, b]	the closed interval from a to b	The values between a and b, including the endpoints.
(a, b]	The (half-open) interval from a to b excluding a, and including b.	The values between a and b, excluding a, and including b. Similar for $[a, b)$.
\mathbb{R} or \mathbf{R}	the real numbers	It can also be used for the plane as \mathbb{R}^{2}, and in higher dimensions.
\mathbb{C} or \mathbf{C}	the complex numbers	$\{a+b i: a, b \in \mathbb{R}\}$, where $i^{2}=-1$.
\mathbb{Z} or \mathbf{Z}	the integers	$\ldots,-2,-1,0,1,2,3, \ldots$
\mathbb{N} or \mathbf{N}	the natural numbers	$1,2,3,4, \ldots$
$a \in B$	a is an element of B	The variable a lies in the set (of values) B.
$a \notin B$	a is not an element of B	
$A \cup B$	A union B	The set of all points that fall in A or B.
$A \cap B$	A intersection B	The set of all points that fall in both A and B.
$A \subset B$	A is a subset of B or A is contained in B	Any element of A is also an element of B.
$\forall x$	for all x	Something is true for all (any) value of x (usually with a side condition like $\forall x>0$).
\exists	there exists	Used in proofs and definitions as a shorthand.
\exists !	there exists a unique	Used in proofs and definitions as a shorthand.
$f \circ g$	f composed with g or f of g	Denotes $f(g(\cdot))$.
n !	n factorial	$n!=n(n-1)(n-2) \cdots \times 2 \times 1$.
$\lfloor x\rfloor$	the floor of x	The nearest integer $\leq x$.
$\lceil x\rceil$	the ceiling of x	The nearest integer $\geq x$.
$\begin{aligned} & f=\mathcal{O}(g) \text { or } \\ & f=O(g) \end{aligned}$	f is big oh of g	$\lim _{x \rightarrow \infty} \sup _{y>x}\|f(y) / g(y)\|<\infty$. Sometimes the limit is toward 0 or another point.
$f=o(g)$	f is little oh of g	$\lim _{x \rightarrow \infty} \sup _{y>x}\|f(y) / g(y)\|=0$.
$x \rightarrow a^{+}$	x goes to a from the right	x is approaching a, but x is always greater than a. Similar for $x \rightarrow a^{-}$.

The Trouble with $=$

The most commonly used, and most commonly misused, symbol is ' $=$ '. The ' $=$ ' symbol means that the things on either side are actually the same, just written a different way. The common misuse of ' $=$ ' is to mean 'do something'. For example, when asked to compute $(3+5) / 2$, some people will write:

Bad:

$$
3+5=8 / 2=4
$$

This claims that $3+5=4$, which is false. We can fix this by carrying the ' $/ 2$ ' along, as in $(3+5) / 2=8 / 2=4$. We could instead use the ' \Rightarrow ' symbol, meaning 'implies', and turn it into a logical statement:
Good:

$$
3+5=8 \quad \Rightarrow \quad(3+5) / 2=4
$$

To Symbol or not to Symbol?

Bad: $\lim _{x \rightarrow x_{0}} f(x)=L$ means that $\forall \epsilon>0, \exists \delta>0$ s.t. $\forall x$,

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

Although this statement is correct mathematically, it is difficult to read (unless you are well-versed in math-speak). This example shows that although you can write math in all symbols as a shortcut, often it is clearer to use words. A compromise is often preferred.
Good:
The Formal Definition of Limit: Let $f(x)$ be defined on an open interval about x_{0}, except possibly at x_{0} itself. We say that $f(x)$ approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x we have

$$
0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Other Examples

The ' \Rightarrow ' symbol should be used even when doing simple algebra.

Good:

$$
(y-0)=2(x-1) \quad \Longrightarrow \quad y=2 x-2
$$

You will be more comfortable with symbols, and better able to use them, if you connect them with their spoken form and their meaning.
Good: The mathematical notation $(f \circ g)(x)$ is read " f composed with g at the point x " or " f of g of $x^{\prime \prime}$ and means

$$
f(g(x))
$$

