Math 2301-100 Spring 2022 Test through 1.4 p.1

score | possible | page Name:
20 1
28 2 Show your work!
32 3 You may not give or receive any assistance during a test, including but
20 4 not limited to using notes, phones, calculators, computers, or another
100 student’s solutions. (You may ask me questions.)

1. Sketch the graph of a single function f that satisfies the following conditions.

(a) f has domain [0,12).
/2 f(z) < 4 always.
/2 f1) =2
/2 lim f(z) =1.
T—2~

2 li =3.
/ Jim f(2)
/2 911311 f(z) does not exist.
/2 lim f(x) = —1.

r—8

/2 f(8) =-2
/2 zlinfof($) =4.

2 li =2.
/ lim f(z)

Y Solutions may vary.
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2.

(a)

Complete the definition of The Limit of a Function f at a point.:
Let I be an open interval containing ¢, and let f be a function defined on I, except possibly at ¢. The
statement that “the limit of f(x), as « approaches ¢, is L” is denoted by
lim f(x) =L,
Tr—c
and means that
given any € > 0,
there exists § > 0 such that for all x in I, where x # ¢,
if |x —¢| < 4, then |f(z) — L| < e.

Use this definition to prove that lirr}3 5t +4 =19.
T—

Starting from |(5z +4) — 19| = | f(z) — L| < &, we can simplify to |52 — 15| < ¢ and then divide by 5
to get |z — 3| < &/5. Given any £ > 0, we can choose § = /5 and have

|t —3|<d=¢/b & |br—15|<e<|(Bx+4) —19=|f(z) - L| < e,
so we have proven the limit.

Complete the statement of The Squeeze Theorem:
Let f, g and h be functions on an open interval I containing ¢ such that for all = in I, (except possibly
at ¢ = ¢)

f(z) < g(z) < h(z).

If
lim f(x) = L = lim h(x),

r—c Tr—cC

then
lim g(x) = L.

Tr—cC

1
Use the Squeeze Theorem to evaluate lim 2x sin <—>
z—0 xT

Set
f(x) = =2|z],
g(z) = 2z sin (1> , and
x
h(z) = 2|x|.

Since —1 < sin(:) < 1, we have f(z) < g(x) < h(z) when z is near 0 (and for all x # 0), so the first
assumption of the Squeeze Theorem holds with ¢ = 0.

We can compute lim,_,q f(z) = lim,_,o h(x) = 0, so the second assumption of the Squeeze Theorem
also holds with ¢ = 0 and L = 0.

Thus the conclusion of the Squeeze Theorem holds and we can conclude

1
lim 2z sin () =limg(x) =L =0.
x

z—0 T—cC
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4. Compute the following limits.

L’Hopital’s rule.

Spring 2022 Test through 1.4 p.3

Use properties of limits and algebra, not the - definition. Do not use

(a) fim (=9
x—0 €T
4—x—4 —x
. i - 74iz . 4(d—=) . I(d—=a) . T . -1 -1 -1
lim = lim ——~* = lim = lim = lim = = —
z—0 x z—0 X =0 z—0 334(4 — x) xz—0 4(4 - Jj) 4(4 - O) 16
(b) lim =2
x—0 x
42 — (42 —8x + 22 8z — 22 8 —
lim ( l—'—m):lim S zlimuzlimS—x:S—O:S
x—0 €T x—0 X x—0 X x—0
2
-7
(¢) lim —x2 -
z—0 1% + 20 ( )
. . 0—-7 7
lli)r%)TT _:zl:lgb T T (0+2) 2
—4
(d) lim — "~ =
s—4 —2
o —4 Vr+2 L w—4yx+2
I Eavrrr MmpTi g lmyErRsViszszeasd
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5. Determine whether each of the following statements is True or False.

Correct answers are worth 2, incorrect answers are worth 0, and no answer is worth 1.

x

(a) True False Ifax#0,y#0,and z=#0, then % = i

True. Dividing by y and then z is the same as dividing by yz.

5\ % 229
(b) True False Ifz # 0 then — ==

23
23 7\  25-2%29 2P
x4 4zt 57

e

(c) True False Ifz#0thenz+az"!=0.
False. If z = 1 then z + 27! = 2.

(d) True TFalse 5+ cos?(f) +sin*(0) = 6.
True. sin?(#) + cos?(9) = 1

(e) True False Ifz > 1 then 71987(®) = g
True. Exponentials and logarithms are inverse functions. = > 1 is sufficient to stay in the domain of
the logarithm.

In(xz+2) N
() n@)

False. There are no simplifications for division of logarithms.

(f) True False Ifz >0 then

(g) True False The graph of f(z) = |z — 1| looks like M
False. The argument x — 1 shifts the graph of |x| to the right.

(h) True False If lin}5 f(z) =7, then }mé f(2t)="7.
T—> —
True. Informally, if ¢ is near 3, then 2t is near 6 so f(2t) is near 7. Formally, for any ¢ > 0, we know
there exist 0; > 0 such that 0 < |z — 6] < d; implies |f(x) — 7| < e. Setting 2¢ = x, we then know
0<|2t—6|<d <0< |t—3] <1 /2=0 implies |f(2t) — 7| < e.

z—3
(i) True False lim =1
z—3- |z — 3|
False. Since x — 3~ we know z < 3 sox —3 < 0so |r — 3| = —(x — 3). Thus
lim g lim i: lim —1=-1.

e—3- v — 3]  a—o3- —(x—3)  ao3-

(j) True False If lim f(z) =4, then lim f(z)=
x—3 r—3+

True. For the ordinary limit to exist, both one-sided limits must exist and agree with it.
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