score	possible	page
	20	1
	31	2
	24	3
	25	4
	100	

Name: _____

Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

- /5 1. (a) State the Mean Value Theorem using the template below.
 - If f is continuous on the closed interval [a, b] and
 - f is differentiable on the open interval (a, b),

then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

/5 (b) Your friend claims that if f'(x) > 2 for all x and f(0) = 5, then f(3) > 12. Use the Mean Value Theorem to either show that this claim is true or get a different bound on f(3).

Since we are told f'(x) > 2 for all x, f must be differentiable everywhere and thus continuous everywhere. Consequently it is continuous on [0,3] and differentiable on (0,3), so the assumptions of the Mean Value Theorem are satisfied.

The conclusion of the Mean Value Theorem is that there exists $c \in (0,3)$ with $f'(c) = \frac{f(3)-5}{3-0}$, so $\frac{f(3)-5}{3} > 2$, which implies f(3) > 11. This is the correct bound.

One can show that f(3) > 12 is false with the example f(x) = 2.1x + 5, which has f(0) = 5, f'(x) = 2.1 > 2, and f(3) = 6.3 + 5 = 11.3 < 12.

/10 2. Use the Midpoint rule with n=3 to approximate the integral. (Do **not** evaluate the trigonometric functions or otherwise simplify your result.) Include a drawing of your subdivision of the interval and the midpoints used in the approximation.

$$\int_{2}^{4} \sin(\sqrt{x}) \, dx$$

The interval [a, b] = [2, 4] has length 2 and we are using 3 rectangles, so the width of each rectangle is $\Delta x = 2/3$.

The base of the first rectangle is [2, 2+2/3], which has midpoint $\bar{x}_1 = 2+1/3 = 7/3$. The second has base [2+2/3, 3+1/3] and midpoint $\bar{x}_2 = 3$, and the third has base [3+1/3, 4] and midpoint $\bar{x}_3 = 3+2/3 = 11/3$.

We can visualize this as follows.

The area estimate is thus

$$f(\bar{x}_1)\Delta x + f(\bar{x}_2)\Delta x + f(\bar{x}_3)\Delta x = \sin(\sqrt{7/3})\frac{2}{3} + \sin(\sqrt{3})\frac{2}{3} + \sin(\sqrt{11/3})\frac{2}{3}.$$

3. Find an antiderivative for each function. (The "+C" to make it general is not required.)

/3 (a)
$$f(x) = x^2 \Rightarrow F(x) = \frac{x^3}{3} + C$$

/3 (b)
$$f(x) = \frac{1}{r^2} \Rightarrow F(x) = -x^{-1} + C$$

/3 (c)
$$f(x) = \frac{1}{x} \Rightarrow F(x) = \ln(x) + C$$

/3 (d)
$$f(x) = \cos(7) \Rightarrow F(x) = \cos(7)x + C$$

/3 (e)
$$f(x) = e^x \implies F(x) = e^x + C$$

/3 (f)
$$f(x) = x^2 + 1 \Rightarrow F(x) = \frac{x^3}{3} + x + C$$

/3 (g)
$$f(x) = \frac{1}{x^2 + 1} \Rightarrow F(x) = \arctan(x) + C$$

4. Evaluate each definite integral. (Do not simplify the result.)

/5 (a)
$$\int_{1}^{2} \cos(x) dx = \sin(x)|_{1}^{2} = \sin(2) - \sin(1)$$

/5 (b)
$$\int_{2}^{5} \sqrt{x} + 1 dx = \left(\frac{2}{3} x^{3/2} + x \right) \Big|_{2}^{5} = \left(\frac{2}{3} 5^{3/2} + 5 \right) - \left(\frac{2}{3} 2^{3/2} + 2 \right)$$

The graph of a velocity function v(t) on the interval $t \in [0, 12]$ is given above; curved parts are portions of circles. Let s(t) be the position function.

/3 (a) Compute
$$\int_0^2 v(t) dt = \frac{1}{2}(2-0)(1+3) = 4$$

/3 (b) Compute
$$\int_{2}^{10} v(t) dt = 3(10 - 2) = 24$$

/3 (c) Compute
$$\int_{10}^{12} v(t) dt = 0$$

/3 (d) Compute the change in position
$$s(12) - s(0) =$$

$$\int_0^{12} v(t) dt = 4 + 24 + 0 = 28.$$

- (e) Compute the total distance traveled during the time interval [0,12].

 We need to count the part on the interval [11,12] as positive rather than negative, so we get $\int_0^{11} v(t) \, dt + \int_{11}^{12} (-v(t)) \, dt = 4 + 24 + 3/2 + 3/2 = 31.$
- /3 (f) Compute the average value of v(t) on the interval [0, 12]. $v_{\text{AVG}[0,12]} = \frac{1}{12-0} \int_{0}^{12} v(t) \, dt = \frac{28}{12} = \frac{7}{3}.$

/3 (g) On what intervals is
$$s(t)$$
 increasing? $s(t)$ is increasing when $s'(t) = v(t) > 0$, which is on the interval $(0, 11)$.

/3 (h) On what intervals is s(t) concave up? s(t) is concave up when s''(t) = v'(t) > 0, which is on the intervals (0, 2) and (4, 8).

Math 2301-102 Fall 2018 Test through 4.4 p.4

- 6. For the function $f(x) = x(x-2)^3$:
- /2 (a) Find the x- and y-intercepts.
- /6 (b) Find the intervals on which f is increasing or decreasing.
- /4 (c) Find the local maximum and minimum values of f.
- /4 (d) Find the intervals on which f is concave up or concave down.
- (e) Find the inflection points.
 - (f) Use the information above to sketch the graph.

f(0) = 0 so the y-intercept is at 0.

Setting $f(x) = x(x-2)^3 = 0$ gives x-intercepts 0 and 2.

We can compute

/5

$$f'(x) = (x-2)^3 + x3(x-2)^2 = ((x-2) + 3x)(x-2)^2 = (4x-2)(x-2)^2 = 2(2x-1)(x-2)^2.$$

Setting f'(x) = 0 then gives critical numbers 1/2 and 2.

We can compute

$$f''(x) = 2(2)(x-2)^2 + 2(2x-1)2(x-2) = 4((x-2) + (2x-1))(x-2) = 4(3x-3)(x-2) = 12(x-1)(x-2).$$

Setting f'(x) = 0 then gives possible locations of inflection points at 1 and 2.

Assembling into a chart and checking signs, we have

There is a local minimum at x = 1/2 with value $f(1/2) = (1/2)(-3/2)^3 = -27/16$ and no local maxima. There are inflection points at (1, f(1)) = (1, -1) and (2, f(2)) = (2, 0).

Scores

