score	possible	page
	30	1
	20	2
	25	3
	25	4
	100	

Name:

Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

- Determine whether each of the following statements is True or False.
 Correct answers are worth +3, incorrect answers are worth −2, and no answer is worth +1.
 Assume that the orders of the matrices are compatible so that they can be added or multiplied.
- /3 (a) True False If **A** is similar to **B**, then \mathbf{A}^2 is similar to \mathbf{B}^2 .

 True. Similar means $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ for some invertible **B** so $\mathbf{B}^2 = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}^{-1}\mathbf{A}^2\mathbf{P}$, which means \mathbf{A}^2 is similar to \mathbf{B}^2 .
- /3 (b) True False $\left(\mathbf{D}\left(\left(\mathbf{A}\mathbf{B}^{T}\right)^{-1}\mathbf{C}\right)^{T}\right)^{-1} = \mathbf{B}\mathbf{A}^{T}\mathbf{C}^{-T}\mathbf{D}^{-1}$ True, $\left(\mathbf{D}\left(\left(\mathbf{A}\mathbf{B}^{T}\right)^{-1}\mathbf{C}\right)^{T}\right)^{-1} = \left(\mathbf{D}\left(\mathbf{B}^{-T}\mathbf{A}^{-1}\mathbf{C}\right)^{T}\right)^{-1} = \left(\mathbf{D}\mathbf{C}^{T}\mathbf{A}^{-T}\mathbf{B}^{-1}\right)^{-1} = \mathbf{B}\mathbf{A}^{T}\mathbf{C}^{-T}\mathbf{D}^{-1}.$
- /3 (c) True False $\operatorname{trace}\left(\left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right]\right)=4.$ False. Trace is the sum of diagonal elements so for this matrix it is 1+4=5.
- /3 (d) True False If **A** is invertible, then $\left((-1/2)\mathbf{A}^{-1}\right)^T$ is invertible. True, $\left(\left((-1/2)\mathbf{A}^{-1}\right)^T\right)^{-1} = -2\mathbf{A}^T$.
- /3 (e) True False If **A** is diagonalizable, then it is also invertible. False. A matrix that is all 0 is diagonal already but is not invertible.
- /3 (f) True False If λ is an eigenvalue of **B** and **B** is invertible, then λ is an eigenvalue of \mathbf{B}^{-1} . False, $1/\lambda$ is an eigenvalue of \mathbf{B}^{-1} but λ need not be.
- (g) True False If A is invertible, then it is also similar to a matrix in Jordan normal form.
 True. Every (square) matrix is similar to a matrix in Jordan normal form. The assumption of invertible is not needed, except that it tells us the matrix is square.
- /3 (h) True False $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.

 False. $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \end{bmatrix}$, which is not a multiple of $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
- /3 (i) True False If the set of vectors $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \mathbf{V}_4\}$ is linearly dependent, then the set of vectors $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3\}$ is linearly dependent.

 False, since if you start with a set $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3\}$ that is linearly independent, you can add $\mathbf{V}_4 = \mathbf{V}_3$ to it and get $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \mathbf{V}_4\}$, which is linearly dependent since $0 = \mathbf{V}_3 \mathbf{V}_4$.
- /3 (j) True False $\det(\mathbf{A})$ is equal to the sum of the eigenvalues of \mathbf{A} (counted with their algebraic multiplicities).

 False. $\det(\mathbf{A})$ is equal to the *product* of the eigenvalues of \mathbf{A} (counted with their algebraic multiplicities).

2. For each matrix below, find all the eigenvalues.

$$/5$$
 (a) $\begin{bmatrix} 2 & 3 \\ -1 & 6 \end{bmatrix}$

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & 3 \\ -1 & 6 - \lambda \end{vmatrix}$$

= $(2 - \lambda)(6 - \lambda) - 3(-1) = 12 - 8\lambda + \lambda^2 + 3 = \lambda^2 - 8\lambda + 15 = (\lambda - 5)(\lambda - 3)$,

so the eigenvalues are $\{3, 5\}$.

$$/5$$
 (b) $\begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix}$

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -1 - \lambda & -1 \\ 1 & -3 - \lambda \end{vmatrix}$$
$$= (-1 - \lambda)(-3 - \lambda) - (-1)1 = 3 + 4\lambda + \lambda^2 + 1 = \lambda^2 + 4\lambda + 4 = (\lambda + 2)^2,$$

so the only eigenvalue is -2.

$$/5 \qquad (c) \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 3 \\ -1 & 0 & 3 \end{bmatrix}$$

Expanding down the second column, we have

$$\begin{aligned} |\mathbf{A} - \lambda \mathbf{I}| &= \begin{vmatrix} 3 - \lambda & 0 & -1 \\ 2 & 3 - \lambda & 3 \\ -1 & 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda) \begin{vmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{vmatrix} \\ &= (3 - \lambda)((3 - \lambda)^2 - (-1)^2) = (3 - \lambda)(9 - 6\lambda + \lambda^2 - 1) = (3 - \lambda)(\lambda^2 - 6\lambda + 8) = (3 - \lambda)(\lambda - 4)(\lambda - 2) \,, \end{aligned}$$

so we have eigenvalues $\{2, 3, 4\}$.

$$/5 \qquad \qquad \text{(d)} \quad \begin{bmatrix} 3 & 0 & 0 & 0 \\ -7 & 9 & 0 & 0 \\ -16 & 17 & 4 & 0 \\ 0 & 0 & 1 & 11 \end{bmatrix}$$

Since the matrix is triangular, its diagonal entries are its eigenvalues, so we have $\{3, 9, 4, 11\}$.

- 3. For each matrix below, the eigenvalues are given. For each eigenvalue, find a basis (of eigenvectors) for the eigenspace.
- /10 (a) $\begin{bmatrix} 8 & -6 \\ 4 & -2 \end{bmatrix}$ has eigenvalues 2 and 4.

For each eigenvalue, we solve $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$. For $\lambda = 2$ this yields

$$\left[\begin{array}{cc|c} 6 & -6 & 0 \\ 4 & -4 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 6 & -6 & 0 \\ 0 & 0 & 0 \end{array}\right],$$

so x_2 is free and $x_1 = x_2$. Choosing $x_2 = 1$ gives an eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

For $\lambda = 4$ this yields

$$\left[\begin{array}{cc|c} 4 & -6 & 0 \\ 4 & -6 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 4 & -6 & 0 \\ 0 & 0 & 0 \end{array}\right],$$

so x_2 is free and $x_1 = (3/2)x_2$. Choosing $x_2 = 2$ gives an eigenvector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

/15 (b)
$$\begin{bmatrix} 4 & -2 & -1 \\ 2 & 0 & -1 \\ 2 & -2 & 1 \end{bmatrix}$$
 has eigenvalues 1 and 2.

For each eigenvalue, we solve $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$. For $\lambda = 1$, using row operations $R_2 \mapsto R_2 - (2/3)R_1$, $R_3 \mapsto R_3 - (2/3)R_1$, and $R_3 \mapsto R_3 + 2R_2$, this yields

$$\begin{bmatrix} 3 & -2 & -1 & | & 0 \\ 2 & -1 & -1 & | & 0 \\ 2 & -2 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -2 & -1 & | & 0 \\ 0 & 1/3 & -1/3 & | & 0 \\ 0 & -2/3 & 2/3 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -2 & -1 & | & 0 \\ 0 & 1/3 & -1/3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Letting x_3 be free, we have $x_2 = x_3$ and $x_1 = (2x_2 + x_3)/3 = x_3$. Choosing $x_3 = 1$ gives an eigenvector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

For $\lambda = 2$, using row operations $R_2 \mapsto R_2 - R_1$ and $R_3 \mapsto R_3 - R_1$, this yields

$$\begin{bmatrix} 2 & -2 & -1 & 0 \\ 2 & -2 & -1 & 0 \\ 2 & -2 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Letting x_2 and x_3 be free, we have $x_1 = (2x_2 + x_3)/2$ and general solution

$$\mathbf{x} = x_2 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 1/2\\0\\1 \end{bmatrix} ,$$

so there is a basis $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1/2\\0\\1 \end{bmatrix} \right\}$.

- /10 4. The matrix **A** has eigenvalues
 - $\lambda_1 = 3$ with algebraic multiplicity 1 whose eigenspace has a basis $\{ \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T \}$ and
 - $\lambda_2 = 5$ with algebraic multiplicity 2 whose eigenspace has a basis $\left\{ \begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 5 \end{bmatrix}^T \right\}$.

Find a matrix **P** that is invertible and a matrix **D** that is diagonal such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$. Placing the eigenvalues on the diagonal yields

$$\mathbf{D} = \left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{array} \right] \,.$$

Placing the corresponding eigenvectors as columns in ${\bf P}$ yields

$$\mathbf{P} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 4 & 5 \end{array} \right] \,.$$

- /15 5. The matrix $\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -7 & 9 \\ 0 & -16 & 17 \end{bmatrix}$ has eigenvalues
 - $\lambda_1 = 3$ with algebraic multiplicity 1 whose eigenspace has a basis $\left\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \right\}$ and
 - $\lambda_2 = 5$ with algebraic multiplicity 2 whose eigenspace has a basis $\left\{ \begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^T \right\}$.

Find a matrix **P** that is invertible and a matrix **J** that is in Jordan normal form such that $\mathbf{A} = \mathbf{PJP}^{-1}$. Since $\lambda_1 = 3$ has algebraic and geometric multiplicity 1, it gives a Jordan block $\mathbf{J}_1 = \begin{bmatrix} 3 \end{bmatrix}$. Since $\lambda_2 = 5$ algebraic multiplicity 2 and geometric multiplicity 1, it gives a Jordan block $\mathbf{J}_2 = \begin{bmatrix} 5 & 1 \\ 0 & 5 \end{bmatrix}$. Assembling these gives

$$\mathbf{J} = \left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{array} \right] .$$

To replace the missing linearly independent eigenvector for λ_2 , we solve $(\mathbf{A} - \lambda_2 \mathbf{I})\mathbf{x} = \begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^T$. Using the row-reduction $R_3 \mapsto R_3 - (4/3)R_2$ we obtain

$$\begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -12 & 9 & 3 \\ 0 & -16 & 12 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -12 & 9 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

which means $x_1 = 0$, x_3 is free, and $x_2 = (3 - 9x_3)/(-12)$. Choosing $x_3 = 0$ gives the vector $\begin{bmatrix} 0 & -1/4 & 0 \end{bmatrix}^T$. Assembling the linearly independent vectors in the order used for **J** yields

$$\mathbf{P} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & -1/4 \\ 0 & 4 & 0 \end{array} \right] .$$

Scores











