score	possible	page
	30	1
	25	2
	25	3
	20	4
	100	

Name:

Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

- 1. Determine whether each of the following statements is True or False.

 Correct answers are worth +3, incorrect answers are worth −2, and no answer is worth +1.

 Assume that the orders of the matrices are compatible so that they can be added or multiplied.
- (a) True False If A is any matrix and B is a row-reduced matrix obtained from A by performing a sequence of elementary row operations, then rank(A) = rank(B).
 True, this is how we determine the number of linearly independent rows in A, which is our definition of rank. (This is also Section 2.6 Theorem 2.)
- /3 (b) True False If **A** is symmetric and invertible, then $\mathbf{A} + \mathbf{A}^{-1}\mathbf{A}$ is symmetric. True, $(\mathbf{A} + \mathbf{A}^{-1}\mathbf{A})^T = (\mathbf{A} + \mathbf{I})^T = \mathbf{A}^T + \mathbf{I}^T = \mathbf{A} + \mathbf{I}$.
- /3 (c) True False If **A** is symmetric and invertible, then $\mathbf{A} + \mathbf{A}^{-1}\mathbf{A}$ is invertible. False, for example if $\mathbf{A} = -\mathbf{I}$ then $\mathbf{A} + \mathbf{A}^{-1}\mathbf{A} = -\mathbf{I} + \mathbf{I} = 0$.
- (d) True False If L is lower-triangular and invertible then L⁻¹ is lower-triangular. True, since our method of constructing the inverse will only create non-zero entries in the lower-triangular part. (This is Section 3.4 Property 7.)
- /3 (e) True False $\left(\mathbf{D}\left(\left(\mathbf{A}\mathbf{B}^{T}\right)^{-1}\mathbf{C}\right)^{T}\right)^{-1} = \mathbf{B}\mathbf{A}^{T}\mathbf{C}^{-T}\mathbf{D}^{-1}$ True, $\left(\mathbf{D}\left(\left(\mathbf{A}\mathbf{B}^{T}\right)^{-1}\mathbf{C}\right)^{T}\right)^{-1} = \left(\mathbf{D}\left(\mathbf{B}^{-T}\mathbf{A}^{-1}\mathbf{C}\right)^{T}\right)^{-1} = \left(\mathbf{D}\mathbf{C}^{T}\mathbf{A}^{-T}\mathbf{B}^{-1}\right)^{-1} = \mathbf{B}\mathbf{A}^{T}\mathbf{C}^{-T}\mathbf{D}^{-1}.$
- /3 (f) True False If the set of vectors $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \mathbf{V}_4\}$ is linearly dependent, then the set of vectors $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3\}$ is linearly dependent.

 False, since if you start with a set $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3\}$ that is linearly independent, you can add $\mathbf{V}_4 = \mathbf{V}_3$ to it and get $\{\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \mathbf{V}_4\}$, which is linearly dependent since $0 = \mathbf{V}_3 \mathbf{V}_4$.
- /3 (g) True False If the set of vectors $\{\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_n\}$ is a basis, then it is linearly dependent. False, a basis (for some other set of vectors) is a spanning set that is also linearly independent.
- /3 (h) True False $\mathbf{A}\mathbf{A}^{-1}\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A}\mathbf{A}^{-1}\mathbf{A}$.

 True, both equal \mathbf{I} .
- /3 (i) True False If all the entries in **A** are positive, then the determinant of **A** is positive. False, for example $\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 1 4 = -3$.
- /3 (j) True False If **A** is invertible, then $\left((-1/2)\mathbf{A}^{-1}\right)^T$ is invertible. True, $\left(\left((-1/2)\mathbf{A}^{-1}\right)^T\right)^{-1} = -2\mathbf{A}^T$.

- 2. Given \mathbf{A} and \mathbf{b} , one method to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ starts by forming the augmented matrix $\mathbf{A}^{\mathbf{b}}$ and then using elementary row operations to transform it to row-reduced form. In each part below, the row-reduced form of $\mathbf{A}^{\mathbf{b}}$ is given. Determine whether or not the system is consistent and find all solutions.
- $/5 \qquad \qquad \text{(a)} \quad \left[\begin{array}{ccc|c} 1 & 2 & 3 & 4 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 1 \end{array} \right]$

Since $rank(\mathbf{A}) = 2 < rank(\mathbf{A}^{\mathbf{b}}) = 3$, the system is inconsistent and so has no solutions.

Since $\operatorname{rank}(\mathbf{A}) = 2 = \operatorname{rank}(\mathbf{A}^{\mathbf{b}})$, the system is consistent. Since \mathbf{A} has 3 columns there are 3 variables and so $3 - \operatorname{rank}(\mathbf{A}) = 1$ arbitrary parameter. Letting $t = x_3$ be this parameter, we have

$$x_2 = 6 - 5t$$
 and $x_1 = 4 - 2(6 - 5t) - 3t = -8 + 7t$. In vector form this is $\mathbf{x} = \begin{bmatrix} -8 \\ 6 \\ 0 \end{bmatrix} + t \begin{bmatrix} 7 \\ -5 \\ 1 \end{bmatrix}$.

We can check

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} -8 \\ 6 \\ 0 \end{bmatrix} + t \begin{bmatrix} 7 \\ -5 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -8+12 \\ 6 \\ 0 \end{bmatrix} + t \begin{bmatrix} 7-10+3 \\ -5+5 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 0 \end{bmatrix}.$$

 $/5 \qquad \qquad \text{(c)} \quad \left[\begin{array}{ccc|c} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{array} \right]$

Since $rank(\mathbf{A}) = 2 < rank(\mathbf{A}^{\mathbf{b}}) = 3$, the system is inconsistent and so has no solutions.

Since $\operatorname{rank}(\mathbf{A}) = 1 = \operatorname{rank}(\mathbf{A}^{\mathbf{b}})$, the system is consistent. Since **A** has 3 columns there are 3 variables and so $3 - \operatorname{rank}(\mathbf{A}) = 2$ arbitrary parameters. Letting $t = x_3$ and $s = x_2$ be these

parameters, we have $x_1 = 4 - 2s - 3t$. In vector form this is $\mathbf{x} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$.

We can check

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2+2 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3+3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}.$$

 $/5 \qquad \qquad \text{(e)} \quad \left[\begin{array}{ccc|c} 1 & 2 & 3 & 4 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 1 & 7 \end{array} \right]$

Since rank(\mathbf{A}) = 3rank($\mathbf{A}^{\mathbf{b}}$) = 3, the system is consistent and has a unique solution. Using back-substitution, $x_3 = 7$, so $x_2 = 6 - 5(7) = -29$, so $x_1 = 4 - 2(-29) - 3(7) = 4 + 58 - 21 = 41$. We can check

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 41 \\ -29 \\ 7 \end{bmatrix} = \begin{bmatrix} 41 + 2(-29) + 3(7) \\ -29 + 5(7) \\ 7 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 7 \end{bmatrix}.$$

3. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 4 & 6 & 0 \end{bmatrix}$$
.

/15 (a) Compute \mathbf{A}^{-1} .

Augmenting **A** with **I** and then applying $R_3 \mapsto R_3 - 4R_1$ and then $R_3 \mapsto R_3 + 2R_2$ yields

$$\begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 4 & 6 & 0 & | & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & -2 & 0 & | & -4 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 2 & | & -4 & 2 & 1 \end{bmatrix}.$$

Applying $R_3 \mapsto (1/2)R_3$, then $R_2 \mapsto R_2 - R_3$, and then $R_1 \mapsto R_1 - 2R_2$, yields

so
$$\mathbf{A}^{-1} = \begin{bmatrix} -3 & 0 & 1\\ 2 & 0 & -1/2\\ -2 & 1 & 1/2 \end{bmatrix}$$
.

/5 (b) Multiply $\mathbf{A}\mathbf{A}^{-1}$ to check that it equals I. (Show your work.)

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 4 & 6 & 0 \end{bmatrix} \begin{bmatrix} -3 & 0 & 1 \\ 2 & 0 & -1/2 \\ -2 & 1 & 1/2 \end{bmatrix} = \begin{bmatrix} -3 + 2(2) & 0 & 1(1) + 2(-1/2) \\ 1(2) + 1(-2) & 1 & 1(-1/2) + 1(1/2) \\ 4(-3) + 6(2) & 0 & 4(1) + 6(-1/2) \end{bmatrix} = \mathbf{I}.$$

/10 (c) Compute the **LU** decomposition of **A**.

Applying $R_3 \mapsto R_3 - 4R_1$ and then $R_3 \mapsto R_3 + 2R_2$ yields

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 4 & 6 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix} = \mathbf{U}.$$

Parsing the steps we took yields

$$\mathbf{L} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & -2 & 1 \end{array} \right] .$$

4. Compute the following determinants.

/5 (a)
$$\begin{vmatrix} a & 2-a \\ 5 & \pi \end{vmatrix} = \frac{a\pi - (2-a)5}{}$$

/15 (b)
$$\begin{vmatrix} 2 & 5 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 3 & 7 & 0 & -4 \\ 0 & -2 & 4 & 0 \end{vmatrix} =$$

Expanding down the first column gives

$$2(-1)^{1+1} \begin{vmatrix} 0 & 1 & -1 \\ 7 & 0 & -4 \\ -2 & 4 & 0 \end{vmatrix} + 0 + 3(-1)^{3+1} \begin{vmatrix} 5 & 0 & 0 \\ 0 & 1 & -1 \\ -2 & 4 & 0 \end{vmatrix} + 0.$$

Simplifying and then expanding the 3×3 determinants along the first row gives

$$2\left(0+1(-1)^{1+2} \left| \begin{array}{cc} 7 & -4 \\ -2 & 0 \end{array} \right| + (-1)(-1)^{1+3} \left| \begin{array}{cc} 7 & 0 \\ -2 & 4 \end{array} \right| \right) + 3\left(5(-1)^{1+1} \left| \begin{array}{cc} 1 & -1 \\ 4 & 0 \end{array} \right| + 0 + 0\right).$$

Simplifying and then evaluating the 2×2 determinants gives

$$2(-(0-(-4)(-2))-(7(4)+0))+3(5(0-(-1)4))=2(8-28)+60=-40+60=20$$
.

Scores

There were accidentally 105 points on the test.

