score	possible	page
	30	1
	25	2
	20	3
	25	4
	100	

Name:

Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

- Determine whether each of the following statements is True or False.
 Correct answers are worth +3, incorrect answers are worth −2, and no answer is worth +1.
 Assume that the orders of the matrices are compatible so that they can be added or multiplied.
- /3 (a) True False If **A** is square, then $\mathbf{A}e^{\mathbf{A}} = e^{\mathbf{A}}\mathbf{A}$. True. $\mathbf{A}e^{\mathbf{A}} = \mathbf{A}\sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^{k+1}}{k!} = \left(\sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}\right)\mathbf{A} = e^{\mathbf{A}}\mathbf{A}$.
- /3 (b) True False If **A** is square, then $e^{(\mathbf{A}^2)} = (e^{\mathbf{A}})^2$.

 False. It is false even for numbers. For example $e^{(1^2)} \neq (e^1)^2$.
- /3 (c) True False If $\mathbf{A}(t)$ is square then $\frac{d}{dt} (\mathbf{A}(t))^2 = \left(\frac{d}{dt} \mathbf{A}(t)\right) \mathbf{A}(t) + \mathbf{A}(t) \left(\frac{d}{dt} \mathbf{A}(t)\right)$.

 True. The product rule works for matrices. (This is property 4 in Section 7.9.)
- /3 (d) True False If $\mathbf{A}(t)$ is square then $\frac{d}{dt}(\mathbf{A}(t))^2 = 2\mathbf{A}(t)\left(\frac{d}{dt}\mathbf{A}(t)\right)$.

 False. The power rule does not work for matrices since in general $\mathbf{A}(t)$ and $\frac{d}{dt}\mathbf{A}(t)$ do not compute. (This was exercise 6 in Section 7.9)
- /3 (e) True False If **A** is square and **B** is invertible, then $(e^{\mathbf{A}t}\mathbf{B})^{-1} = \mathbf{B}^{-1}e^{-\mathbf{A}t}$. True. $(e^{\mathbf{A}t}\mathbf{B})^{-1} = \mathbf{B}^{-1}(e^{\mathbf{A}t})^{-1} = \mathbf{B}^{-1}e^{-\mathbf{A}t}$.
- /3 (f) True False If **A** is square and t is a scalar, then $(e^{\mathbf{A}t})^T = e^{\mathbf{A}^T t}$. True. This is essentially Section 7.8 Property 3, which you proved in exercise 7. Since t is a scalar, $(\mathbf{A}t)^T = \mathbf{A}^T t$.
- /3 (g) True False If **A** is diagonalizable, then it is also invertible.

 False. A matrix that is all 0 is diagonal already but is not invertible.
- /3 (h) True False $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.

 False. $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \end{bmatrix}$, which is not a multiple of $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
- /3 (i) True False **ABC** = **CAB**.

 False, matrix multiplication is not commutative.
- /3 (j) True False $\mathbf{A}\mathbf{A}^{-1}\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A}\mathbf{A}^{-1}\mathbf{A}$. True, both equal \mathbf{I} .

- 2. For the vectors $\mathbf{x} = \begin{bmatrix} 4 & 2 & -3 \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} 5 & -2 & -3 \end{bmatrix}^T$:
- /5 (a) Compute $\langle \mathbf{x}, \mathbf{y} \rangle$. 4(5) + 2(-2) + (-3)(-3) = 20 - 4 + 9 = 25.
- /5 (b) Normalize **x**. $\|\mathbf{x}\| = \sqrt{16 + 4 + 9} = \sqrt{29} \text{ so } \frac{\mathbf{x}}{\|\mathbf{x}\|} = [4/\sqrt{29} \ 2/\sqrt{29} \ -3/\sqrt{29}]^T$.
- /15 3. The matrix $\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -7 & 9 \\ 0 & -16 & 17 \end{bmatrix}$ has eigenvalues
 - $\lambda_1 = 3$ with algebraic multiplicity 1 whose eigenspace has a basis $\left\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \right\}$ and
 - $\lambda_2 = 5$ with algebraic multiplicity 2 whose eigenspace has a basis $\left\{ \begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^T \right\}$.

Find a matrix **P** that is invertible and a matrix **J** that is in Jordan normal form such that $\mathbf{A} = \mathbf{PJP}^{-1}$. (Remember to **show your work**.)

Since $\lambda_1 = 3$ has algebraic and geometric multiplicity 1, it gives a Jordan block $\mathbf{J}_1 = \begin{bmatrix} 3 \end{bmatrix}$. Since $\lambda_2 = 5$ algebraic multiplicity 2 and geometric multiplicity 1, it gives a Jordan block $\mathbf{J}_2 = \begin{bmatrix} 5 & 1 \\ 0 & 5 \end{bmatrix}$. Assembling these gives

$$\mathbf{J} = \left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{array} \right] \,.$$

To replace the missing linearly independent eigenvector for λ_2 , we solve $(\mathbf{A} - \lambda_2 \mathbf{I})\mathbf{x} = \begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^T$. Using the row-reduction $R_3 \mapsto R_3 - (4/3)R_2$ we obtain

$$\begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -12 & 9 & 3 \\ 0 & -16 & 12 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -12 & 9 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

which means $x_1 = 0$, x_3 is free, and $x_2 = (3 - 9x_3)/(-12)$. Choosing $x_3 = 0$ gives the vector $\begin{bmatrix} 0 & -1/4 & 0 \end{bmatrix}^T$. Assembling the linearly independent vectors in the order used for **J** yields

$$\mathbf{P} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & -1/4 \\ 0 & 4 & 0 \end{array} \right] \, .$$

/10 4. The matrix $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 4$. Compute $e^{\mathbf{A}t}$.

Matching $e^{xt} = r(xt) = a_1xt + a_0$ at the eigenvalues gives the system

$$\begin{bmatrix} 1t & 1 & e^t \\ 4t & 1 & e^{4t} \end{bmatrix} \rightarrow \begin{bmatrix} 1t & 1 & e^t \\ 3t & 0 & e^{4t} - e^t \end{bmatrix}$$

so $a_1 = \frac{e^{4t} - e^t}{3t}$ and $a_0 = e^t - t \frac{e^{4t} - e^t}{3t} = \frac{4e^t - e^{4t}}{3}$.

Thus

$$\begin{split} e^{\mathbf{A}t} &= \frac{e^{4t} - e^t}{3t} \mathbf{A}t + \frac{4e^t - e^{4t}}{3} \mathbf{I} = \frac{e^{4t} - e^t}{3} \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} + \frac{4e^t - e^{4t}}{3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 2\frac{e^{4t} - e^t}{3} + \frac{4e^t - e^{4t}}{3} & 1\frac{e^{4t} - e^t}{3} \\ 2\frac{e^{4t} - e^t}{3} & 3\frac{e^{4t} - e^t}{3} + \frac{4e^t - e^{4t}}{3} \end{bmatrix}. \end{split}$$

/10 5. The matrix $\mathbf{A} = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix}$ has eigenvalue $\lambda = 3$ with multiplicity 2. Compute $e^{\mathbf{A}}$.

Matching $f(x) = e^x = r(x) = a_1x + a_0$ and $f'(x) = e^x = r'(x) = a_1$ at the eigenvalue gives the system

$$\left[\begin{array}{cc|c} 3 & 1 & e^3 \\ 1 & 0 & e^3 \end{array}\right]$$

so $a_1 = e^3$ and $a_0 = e^3 - 3e^3 = -2e^3$.

Thus

$$e^{\mathbf{A}} = e^{3}\mathbf{A} - 2e^{3}\mathbf{I} = \begin{bmatrix} 0 & -1e^{3} \\ 1e^{3} & 2e^{3} \end{bmatrix}.$$

/5 6. State the Cayley-Hamilton Theorem.

There are a couple of equivalent ways to state it:

- A matrix satisfies its own characteristic equation.
- If $p(\lambda) = |\mathbf{A} \lambda \mathbf{I}|$ then $p(\mathbf{A}) = \mathbf{0}$.
- 7. You are trying to compute $e^{\mathbf{A}t}$ for a particular matrix \mathbf{A} that has real entries but complex eigenvalues. You get complex-looking coefficients but want them to look real. Use Euler's relations to write the following coefficients without complex numbers:

/5 (a)
$$a_1 = \frac{e^{3t+4ti} - e^{3t-4ti}}{11ti} = e^{3t} \frac{2}{11t} \frac{e^{4ti} - e^{-4ti}}{2i} = e^{3t} \frac{2}{11t} \sin(4t)$$

/5 (b)
$$a_0 = \frac{e^{3t+5ti} + e^{3t-5ti}}{4} = \frac{e^{3t}}{2} \frac{e^{5ti} + e^{-5ti}}{2} = \frac{e^{3t}}{2} \cos(5t)$$

p(x) to interpolate the data, so it should have $p(x_i) = y_i$ for each i. Set up a linear system to determine the coefficients of p(x) and write the system as an augmented matrix. (Do not solve the system.)

Since there are 4 data points we will have 4 equations, so the polynomial p(x) should have 4 coefficients, which means it is degree 3 and can be written as $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$. We get the system of equations

$$a_30^3 + a_20^2 + a_10 + a_0 = 7$$
,
 $a_31^3 + a_21^2 + a_11 + a_0 = 8$,
 $a_33^3 + a_23^2 + a_13 + a_0 = 9$, and
 $a_35^3 + a_25^2 + a_15 + a_0 = 10$.

In augmented matrix form, the system is

$$\left[\begin{array}{ccc|ccc|c} 0 & 0 & 0 & 1 & 7 \\ 1 & 1 & 1 & 1 & 8 \\ 3^3 & 3^2 & 3 & 1 & 9 \\ 5^3 & 5^2 & 5 & 1 & 10 \end{array}\right].$$

Scores

