The tests are cumulative. This guide gives some sample questions for Sections 6.1–6.5, Diagonalization, and Jordan Form. Doing these problems does not replace doing homework problems.

- 1. Define eigenvalue, eigenvector, trace, eigenspace, characteristic polynomial, algebraic multiplicity, geometric multiplicity, similar matrix, diagonalizable matrix, Jordan block, and Jordan normal form. [May be done as True/False questions checking that you know the definition.]
- 2. Determine whether each of the following statements is True or False.

 Correct answers are worth +3, incorrect answers are worth −2, and no answer is worth +1.

 Assume that the orders of the matrices are compatible so that they can be added or multiplied.
 - (a) True False $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.
 - (b) True False If λ is an eigenvalue of **B** then $\lambda 5$ is an eigenvalue of **B** 5**I**.
 - (c) True False If λ is an eigenvalue of **B** and **B** is invertible, then λ is an eigenvalue of \mathbf{B}^{-1} .
 - (d) True False [More questions based on the properties in Section 6.4]
 - (e) True False An eigenvalue's algebraic multiplicity is never more than its geometric multiplicity.
 - (f) True False [More questions based on the Theorems in Section 6.5]
 - (g) True False If **A** is invertible, then it is also diagonalizable.
 - (h) True False [More questions based on diagonalization.]
 - (i) True False If **A** is invertible, then it is also similar to a matrix in Jordan normal form.
 - (j) True False [More questions based on Jordan normal form.]
- 3. For each matrix below, find all the eigenvalues.
 - (a) [several 2×2 showing different possibilities, such as repeated eigenvalues, complex eigenvalues, etc.]
 - (b) [a few bigger ones with structure that makes them easy to evaluate, such as being triangular.]
- 4. For each matrix below, the eigenvalues are given. For each eigenvalue, find a basis (of eigenvectors) for the eigenspace.
 - (a) [one plain 2×2]
 - (b) [one or two with something interesting, such as geometric multiplicity more than 1.]
- 5. The matrix **A** has eigenvalues
 - $\lambda_1 = **$ with algebraic multiplicity ** whose eigenspace has a basis $\{***\}$ and
 - $\lambda_2 = **$ with algebraic multiplicity ** whose eigenspace has a basis $\{***\}$.

Find a matrix **P** that is invertible and a matrix **D** that is diagonal such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

- 6. The matrix $\mathbf{A} = [\text{some } 3 \times 3]$ has eigenvalues
 - $\lambda_1 = **$ with algebraic multiplicity ** whose eigenspace has a basis $\{***\}$ and
 - $\lambda_2 = **$ with algebraic multiplicity ** whose eigenspace has a basis $\{***\}$.

Find a matrix \mathbf{P} that is invertible and a matrix \mathbf{J} that is in Jordan normal form such that $\mathbf{A} = \mathbf{PJP}^{-1}$.