The tests are cumulative. This guide gives some sample questions for Sections 2.7, 3.1–3.5, 5.1 and 5.2. Doing these problems does not replace doing homework problems.

- 1. Define inverse. Define minor. Define cofactor. [might be in True/False format]
- 2. State the relationship between the order (size) of \mathbf{A} , rank(\mathbf{A}), rank($\mathbf{A}^{\mathbf{b}}$), the consistency of the system $\mathbf{A}\mathbf{x} = \mathbf{b}$, and the number of arbitrary unknowns in the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- 3. Prove that $\mathbf{A}^{-1}\mathbf{B}^{-1} = (\mathbf{B}\mathbf{A})^{-1}$. [Theorems and properties from section 3.4. Some to prove, some as True/False.]
- 4. Given \mathbf{A} and \mathbf{b} , one method to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ starts by forming the augmented matrix $\mathbf{A}^{\mathbf{b}}$ and then using elementary row operations to transform it to row-reduced form. In each part below, the row-reduced form of $\mathbf{A}^{\mathbf{b}}$ is given. Determine whether or not the system is consistent and find all solutions.

(a)
$$\begin{bmatrix} 1 & 2 & 3 & | & 4 \\ 0 & 1 & 5 & | & 6 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

- (b) [several parts, mixed up: inconsistent, unique, 1 parameter, 2 parameter...]
- 5. Let $\mathbf{A} = [3x3 \text{ with very easy numbers}].$
 - (a) Compute A^{-1} .
 - (b) Multiply $\mathbf{A}\mathbf{A}^{-1}$ to check that it equals I. (Show your work.)
 - (c) Use \mathbf{A}^{-1} to solve $\mathbf{A}\mathbf{x} = [3x1]$
- 6. Let $\mathbf{A} = [3x3 \text{ with easy numbers}].$
 - (a) Compute the **LU** decomposition of **A**.
 - (b) Multiply **LU** to check that it equals **A**. (Show your work.)
 - (c) Use the **LU** decomposition to solve $\mathbf{A}\mathbf{x} = [3x1]$.
- 7. Compute the following determinants.
 - (a) |2x2 with variables| =
 - (b) |4x4 with some zeros| =