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The tests are cumulative. This guide gives some sample questions for Sections 7.1–7.9, 10.1. Doing these
problems does not replace doing homework problems.

1. (Expect a question taken from a previous test.)

2. Determine whether each of the following statements is True or False.
Correct answers are worth +3, incorrect answers are worth −2, and no answer is worth +1.
Assume that the orders of the matrices are compatible so that they can be added or multiplied.

(a) True False If A is square, then AeA = eAA.

(b) True False If A is square, then e(A
2) =

(
eA
)2

.

(c) True False If A(t) is square then d
dt (A(t))

2
=
(

d
dtA(t)

)
A(t) + A(t)

(
d
dtA(t)

)
.

(d) True False If A(t) is square then d
dt (A(t))

2
= 2A(t)

(
d
dtA(t)

)
.

(e) True False If A is square and B is invertible, then
(
eAtB

)−1
= B−1e−At.

(f) True False If A is square, then eAeA = e2A.

(g) True False [others based on eA properties in Section 7.8]

(h) True False [others based on derivative properties in section 7.9]

3. You are trying to compute eAt for a particular matrix A that has real entries but complex eigenvalues.
You get complex-looking coefficients but want them to look real. Use Euler’s relations to write the
following coefficients without complex numbers:

(a) a1 = e3t+
√

15ti−e3t−
√

15ti
√
15ti

=

(b) a0 = e3t+
√

15ti+e3t−
√

15ti

4 =

4. State the Cayley-Hamilton Theorem.

5. The characteristic polynomial of A =

 1 3 0
0 1 3
0 0 2

 is p(λ) = −λ3 + 4x2 − 5x + 2. Use the Cayley-

Hamilton Theorem to compute A−1. (Do not compute A−1 by another method.)
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6. The matrix A =

[
2 1
2 3

]
has eigenvalues λ1 = 1 and λ2 = 4.

(a) Compute eAt.

(b) Compute d
dte

At.

7. The matrix A =

[
2 −1
1 4

]
has eigenvalue λ = 3 with multiplicity 2. Compute eA.

8. For the vectors x = [ 1 2 −3 ]T and y = [ 5 −2 −3 ]T :

(a) Compute 〈x,y〉.
(b) Normalize x.

9. You did an experiment and collected the data

i 1 2 3 4 5
xi 0 .5 1.0 1.5 2.0
yi 0 .19 .26 .29 .31

. You decide to use a

polynomial p(x) to interpolate the data, so it should have p(xi) = yi for each i. Set up a linear system
to determine the coefficients of p(x) and write it as an augmented matrix. (Do not solve the system.)


