The tests are cumulative. This guide gives some sample questions for Sections 7.1–7.9, 10.1. Doing these problems does not replace doing homework problems.

- 1. (Expect a question taken from a previous test.)
- 2. Determine whether each of the following statements is True or False. Correct answers are worth +3, incorrect answers are worth -2, and no answer is worth +1. Assume that the orders of the matrices are compatible so that they can be added or multiplied.
  - If **A** is square, then  $\mathbf{A}e^{\mathbf{A}} = e^{\mathbf{A}}\mathbf{A}$ . (a) True False
  - If **A** is square, then  $e^{(\mathbf{A}^2)} = (e^{\mathbf{A}})^2$ . (b) True
  - If  $\mathbf{A}(t)$  is square then  $\frac{d}{dt}(\mathbf{A}(t))^2 = \left(\frac{d}{dt}\mathbf{A}(t)\right)\mathbf{A}(t) + \mathbf{A}(t)\left(\frac{d}{dt}\mathbf{A}(t)\right)$ . (c) True False
  - If  $\mathbf{A}(t)$  is square then  $\frac{d}{dt}(\mathbf{A}(t))^2 = 2\mathbf{A}(t)(\frac{d}{dt}\mathbf{A}(t))$ . (d) True False
  - If **A** is square and **B** is invertible, then  $(e^{\mathbf{A}t}\mathbf{B})^{-1} = \mathbf{B}^{-1}e^{-\mathbf{A}t}$ . False (e) True
  - If **A** is square, then  $e^{\mathbf{A}}e^{\mathbf{A}} = e^{2\mathbf{A}}$ . False (f) True
  - [others based on  $e^{\mathbf{A}}$  properties in Section 7.8] (g) True False
  - [others based on derivative properties in section 7.9] (h) True False
- 3. You are trying to compute  $e^{\mathbf{A}t}$  for a particular matrix **A** that has real entries but complex eigenvalues. You get complex-looking coefficients but want them to look real. Use Euler's relations to write the following coefficients without complex numbers:

(a) 
$$a_1 = \frac{e^{3t+\sqrt{15}ti}-e^{3t-\sqrt{15}ti}}{\sqrt{15}ti} =$$
  
(b)  $a_0 = \frac{e^{3t+\sqrt{15}ti}+e^{3t-\sqrt{15}ti}}{4} =$ 

(b) 
$$a_0 = \frac{e^{3t+\sqrt{15}ti}+e^{3t-\sqrt{15}ti}}{4} =$$

- 4. State the Cayley-Hamilton Theorem.
- 5. The characteristic polynomial of  $\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$  is  $p(\lambda) = -\lambda^3 + 4x^2 5x + 2$ . Use the Cayley-Hamilton Theorem to compute  $A^{-1}$ . (Do not compute  $A^{-1}$  by another method.)

- 6. The matrix  $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$  has eigenvalues  $\lambda_1 = 1$  and  $\lambda_2 = 4$ .
  - (a) Compute  $e^{\mathbf{A}t}$ .
  - (b) Compute  $\frac{d}{dt}e^{\mathbf{A}t}$ .

7. The matrix  $\mathbf{A} = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix}$  has eigenvalue  $\lambda = 3$  with multiplicity 2. Compute  $e^{\mathbf{A}}$ .

- 8. For the vectors  $\mathbf{x} = [ \ 1 \ 2 \ -3 \ ]^T$  and  $\mathbf{y} = [ \ 5 \ -2 \ -3 \ ]^T$ :
  - (a) Compute  $\langle \mathbf{x}, \mathbf{y} \rangle$ .
  - (b) Normalize x.