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Show your work!
You may not give or receive any assistance during a test, including but
not limited to using notes, phones, calculators, computers, or another
student’s solutions. (You may ask me questions.)

1. (a) Use the properties of exponents to simplify

(
25

4x4y5

)(
5

2x3y2

)−3
./5

=

(
25

4x4y5

)(
2x3y2

5

)3

=

(
25

4x4y5

)(
23x9y6

53

)
=

25 · 23x9y6

4x4y5 · 53
=

2x5y

5
.

(b) Write the equation of the line passing through the two points (1, 3) and (3, 4)./5

We compute the slope by

m =
y2 − y1
x2 − x1

=
4− 3

3− 1
=

1

2
.

Using the point-slope form of a line y− y1 = m(x− x1), we obtain y− 3 = 1
2 (x− 1). (Optionally,

we could then convert to slope intercept form and get y = 1
2x + 5

2 .

(c) Let f(x) = 7x− 3 and g(x) = x+3
7 ./5

• Compute (g ◦ f)(x)

• Compute (f ◦ g)(x)

• Are f and g inverses of each other?

(g ◦ f)(x) =g(f(x)) =
(7x− 3) + 3

7
=

7x

7
=x

(f ◦ g)(x) =f(g(x)) =7

(
x + 3

7

)
− 3 =x + 3− 3 =x .

Since (g ◦ f)(x) = (f ◦ g)(x) = x, yes they are inverses.

(d) Use the properties of logarithms to write f(x) = 2 ln(x − 3) + loge(y + 2) − ln(z) as a single/5
logarithm.

f(x) = ln((x− 3)2) + ln(y + 2)− ln(z) = ln((x− 3)2(y + 2))− ln(z) = ln

(
(x− 3)2(y + 2)

z

)
.
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2. Consider the rational function

f(x) =
x2 + 4x + 3

1− x2
.

(a) Express the domain of f in interval notation./4

f(x) = (x+1)(x+3)
(1+x)(1−x) = x+3

1−x except that there is a hole at x = −1. Since we also divide by 0 at

x = 1, the domain is (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(b) Find the x and y intercepts of f ./4

f(0) = 0+3
1−0 = 3 so the y-intercept is at (0, 3). Setting 0 = x+3

1−x yields x = −3, so the x-intercept
is at (−3, 0).

(c) Find all vertical and horizontal asymptotes and identify any holes./6

Since (1−x) remains in the denominator, x = 1 is a vertical asymptote. Horizontal asymptotes are
determined by the highest powers in the numerator and denominator, so we have x+3

1−x →
x
−x = −1

and y = −1 is a horizontal asymptote.

As noted above, x = −1 gives a hole. The y-value is −1+3
1−−1 = 1.

(d) Sketch a detailed graph of f ./6

6
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y = −1
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3. State the definition of “A function f is continuous at a number a”. Let/15

f(x) =


2x2 − x− 15

x− 3
if x < 3

kx− 1 if x ≥ 3
.

Determine the value of k that will make the function f continous at 3, or explain why no value of k
will work.

A function f is continuous at a number a if limx→a f(x) = f(a).

Since the function is piecewise defined with a change at a, we have to compute

f(3) =3k − 1 ,

lim
x→3+

f(x) = lim
x→3+

(kx− 1) =3k − 1 , and

lim
x→3−

f(x) = lim
x→3−

2x2 − x− 15

x− 3
= lim

x→3−

(x− 3)(2x + 5)

x− 3
= lim

x→3−
2x + 5 = 11 .

For limx→3 f(x) to exist we need 3k − 1 = 11 so k = 4 and limx→3 f(x) = 11 = f(3).

4. State the Intermediate Value Theorem. Identify what are its assumptions (hypotheses) and what/15
are its conclusions. Use the Intermediate Value Theorem to show that the equation 10x = x2 has a
solution.

If (hypotheses)

• f is continuous on [a, b] and

• f(a) < N < f(b) or f(a) > N > f(b),

then (conclusions) there exists c ∈ (a, b) such that f(c) = N .

Let f(x) = x2 − 10x, so we want to show a solution to f(x) = 0 exists. Since x and 10x are both
continuous, so is f(x). Plugging in, we find

f(0) = 0− 100 = −1 < 0 and

f(−1) = 1− 10−1 = 9/10 > 0 .

So, by the Intermediate Value Theorem, there must exist −1 < c < 0 such that f(c) = 0.
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5. Compute the following limits. If you use the Squeeze Theorem, then indicate the two functions that
you are using to squeeze.

(a) lim
x→4

x2 − 4x

x2 − 3x− 4
=/10

lim
x→4

x(x− 4)

(x− 4)(x + 1)
= lim

x→4

x

x + 1
=

4

4 + 1
=

4

5
.

(b) lim
h→0

(2 + h)3 − 8

h
=/10

lim
h→0

(23 + 3(22h) + 3(2h2) + h3)− 8

h
= lim

h→0

12h + 6h2 + h3

h
= lim

h→0

h(12 + 6h + h2)

h

= lim
h→0

(12 + 6h + h2) =12 + 0 + 0 = 12 .

(c) For f(x) = (3x− 1)−1, compute lim
h→0

f(x + h)− f(x)

h
=/10

lim
h→0

(3(x + h)− 1)−1 − (3x− 1)−1

h
= lim

h→0

1
(3(x+h)−1) −

1
(3x−1)

h

= lim
h→0

(3x−1)−(3(x+h)−1)
(3x−1)(3(x+h)−1)

h
= lim

h→0

−3h

h(3x− 1)(3(x + h)− 1)

= lim
h→0

−3

(3x− 1)(3(x + h)− 1)
=

−3

(3x− 1)(3(x + 0)− 1)
=

−3

(3x− 1)2
.



Math 2301-102 (3961) Fall 2016 Test through 1.5 p.5

Scores

Score on 1a

co
un

t

0 1 2 3 4 5

0
5

10
15

Score on 1b
co

un
t

0 1 2 3 4 5

0
5

10
15

20
25

30
35

Score on 1c

co
un

t

0 1 2 3 4 5

0
10

20
30

40

Score on 1d

co
un

t

0 1 2 3 4 5

0
5

10
15

20
25

Score on 2

co
un

t

0 5 10 15 20

0
1

2
3

4
5

6
7

Score on 3

co
un

t

0 5 10 15

0
5

10
15

20

Score on 4

co
un

t

0 5 10 15

0
2

4
6

8
10

Score on 5a

co
un

t

0 2 4 6 8 10

0
10

20
30

40
50

Score on 5b

co
un

t

0 2 4 6 8 10

0
10

20
30

Score on 5c

co
un

t

0 2 4 6 8 10

0
2

4
6

8
10

12
14

Score on Test 2

co
un

t

0 20 40 60 80 100

0
2

4
6

8


