| score | possible | page |
|-------|----------|------|
|       | 20       | 1    |
|       | 20       | 2    |
|       | 30       | 3    |
|       | 30       | 4    |
|       | 100      |      |

/5

Name:

## Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

/5 1. (a) Use the properties of exponents to simplify  $\left(\frac{25}{4x^4y^5}\right)\left(\frac{5}{2x^3y^2}\right)^{-3}$ .

$$= \left(\frac{25}{4x^4y^5}\right) \left(\frac{2x^3y^2}{5}\right)^3 \qquad = \left(\frac{25}{4x^4y^5}\right) \left(\frac{2^3x^9y^6}{5^3}\right) \qquad = \frac{25 \cdot 2^3x^9y^6}{4x^4y^5 \cdot 5^3} \qquad = \frac{2x^5y}{5} \,.$$

/5 (b) Write the equation of the line passing through the two points (1, 3) and (3, 4). We compute the slope by

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 3}{3 - 1} = \frac{1}{2}$$
.

Using the point-slope form of a line  $y - y_1 = m(x - x_1)$ , we obtain  $y - 3 = \frac{1}{2}(x - 1)$ . (Optionally, we could then convert to slope intercept form and get  $y = \frac{1}{2}x + \frac{5}{2}$ .

- (c) Let f(x) = 7x 3 and  $g(x) = \frac{x+3}{7}$ .
  - Compute  $(g \circ f)(x)$
  - Compute  $(f \circ g)(x)$
  - Are f and g inverses of each other?

$$(g \circ f)(x)$$
 =  $g(f(x))$  =  $\frac{(7x-3)+3}{7}$  =  $\frac{7x}{7}$  =  $x$   
 $(f \circ g)(x)$  =  $f(g(x))$  =  $x + 3 - 3$  =  $x + 3 - 3$  =  $x + 3 - 3$ 

Since  $(g \circ f)(x) = (f \circ g)(x) = x$ , yes they are inverses.

/5 (d) Use the properties of logarithms to write  $f(x) = 2\ln(x-3) + \log_e(y+2) - \ln(z)$  as a single logarithm.

$$f(x) = \ln((x-3)^2) + \ln(y+2) - \ln(z) = \ln((x-3)^2(y+2)) - \ln(z) = \ln\left(\frac{(x-3)^2(y+2)}{z}\right).$$

2. Consider the rational function

$$f(x) = \frac{x^2 + 4x + 3}{1 - x^2} \,.$$

/4 (a) Express the domain of f in interval notation.

 $f(x) = \frac{(x+1)(x+3)}{(1+x)(1-x)} = \frac{x+3}{1-x}$  except that there is a hole at x = -1. Since we also divide by 0 at x = 1, the domain is  $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$ .

/4 (b) Find the x and y intercepts of f.

 $f(0) = \frac{0+3}{1-0} = 3$  so the y-intercept is at (0,3). Setting  $0 = \frac{x+3}{1-x}$  yields x = -3, so the x-intercept is at (-3,0).

(c) Find all vertical and horizontal asymptotes and identify any holes.

Since (1-x) remains in the denominator, x=1 is a vertical asymptote. Horizontal asymptotes are determined by the highest powers in the numerator and denominator, so we have  $\frac{x+3}{1-x} \to \frac{x}{-x} = -1$  and y=-1 is a horizontal asymptote.

As noted above, x = -1 gives a hole. The y-value is  $\frac{-1+3}{1--1} = 1$ .

/6 (d) Sketch a detailed graph of f.



/15 3. State the definition of "A function f is continuous at a number a". Let

$$f(x) = \begin{cases} \frac{2x^2 - x - 15}{x - 3} & \text{if } x < 3\\ kx - 1 & \text{if } x \ge 3 \end{cases}.$$

Determine the value of k that will make the function f continous at 3, or explain why no value of k will work.

A function f is continuous at a number a if  $\lim_{x\to a} f(x) = f(a)$ .

Since the function is piecewise defined with a change at a, we have to compute

$$f(3) = 3k - 1,$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (kx - 1) = 3k - 1,$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{2x^{2} - x - 15}{x - 3} = \lim_{x \to 3^{-}} \frac{(x - 3)(2x + 5)}{x - 3} = \lim_{x \to 3^{-}} 2x + 5 = 11.$$

For  $\lim_{x\to 3} f(x)$  to exist we need 3k-1=11 so k=4 and  $\lim_{x\to 3} f(x)=11=f(3)$ .

/15 4. State the Intermediate Value Theorem. Identify what are its assumptions (hypotheses) and what are its conclusions. Use the Intermediate Value Theorem to show that the equation  $10^x = x^2$  has a solution.

If (hypotheses)

- f is continuous on [a, b] and
- f(a) < N < f(b) or f(a) > N > f(b),

then (conclusions) there exists  $c \in (a, b)$  such that f(c) = N.

Let  $f(x) = x^2 - 10^x$ , so we want to show a solution to f(x) = 0 exists. Since x and  $10^x$  are both continuous, so is f(x). Plugging in, we find

$$f(0) = 0 - 10^0 = -1 < 0$$
 and  $f(-1) = 1 - 10^{-1} = 9/10 > 0$ .

So, by the Intermediate Value Theorem, there must exist -1 < c < 0 such that f(c) = 0.

- 5. Compute the following limits. If you use the Squeeze Theorem, then indicate the two functions that you are using to squeeze.
- /10 (a)  $\lim_{x \to 4} \frac{x^2 4x}{x^2 3x 4} =$

$$\lim_{x \to 4} \frac{x(x-4)}{(x-4)(x+1)} = \lim_{x \to 4} \frac{x}{x+1} = \frac{4}{5}.$$

/10 (b) 
$$\lim_{h \to 0} \frac{(2+h)^3 - 8}{h} =$$

$$\lim_{h \to 0} \frac{(2^3 + 3(2^2h) + 3(2h^2) + h^3) - 8}{h} = \lim_{h \to 0} \frac{12h + 6h^2 + h^3}{h} = \lim_{h \to 0} \frac{h(12 + 6h + h^2)}{h}$$

$$= \lim_{h \to 0} (12 + 6h + h^2)$$

$$= 12 + 0 + 0 = 12.$$

/10 (c) For 
$$f(x) = (3x - 1)^{-1}$$
, compute  $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$ 

$$\lim_{h \to 0} \frac{(3(x+h)-1)^{-1} - (3x-1)^{-1}}{h} = \lim_{h \to 0} \frac{\frac{1}{(3(x+h)-1)} - \frac{1}{(3x-1)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{(3x-1) - (3(x+h)-1)}{(3x-1)(3(x+h)-1)}}{h} = \lim_{h \to 0} \frac{-3h}{h(3x-1)(3(x+h)-1)}$$

$$= \lim_{h \to 0} \frac{-3}{(3x-1)(3(x+h)-1)} = \frac{-3}{(3x-1)(3(x+0)-1)} = \frac{-3}{(3x-1)^2}.$$

Score on 5c

## Scores



Score on Test 2