Show your work!
You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student’s solutions. (You may ask me questions.)

1. (a) Use the properties of exponents to simplify \(\left(\frac{25}{4x^4y^5} \right) \left(\frac{5}{2x^3y^2} \right)^{-3} \).

\[
= \left(\frac{25}{4x^4y^5} \right) \left(\frac{2x^3y^2}{5} \right)^3
= \left(\frac{25}{4x^4y^5} \right) \left(\frac{2^3x^9y^6}{5^3} \right)
= \frac{25 \cdot 2^3x^9y^6}{4x^4y^5 \cdot 5^3}
= \frac{2x^5y}{5}.
\]

(b) Write the equation of the line passing through the two points (1, 3) and (3, 4).

We compute the slope by

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 3}{3 - 1} = \frac{1}{2}.
\]

Using the point-slope form of a line \(y - y_1 = m(x - x_1) \), we obtain \(y - 3 = \frac{1}{2}(x - 1) \). (Optionally, we could then convert to slope intercept form and get \(y = \frac{1}{2}x + \frac{5}{2} \).

(c) Let \(f(x) = 7x - 3 \) and \(g(x) = \frac{x + 3}{7} \).

- Compute \((g \circ f)(x)\)
- Compute \((f \circ g)(x)\)
- Are \(f \) and \(g \) inverses of each other?

\[
(g \circ f)(x) = g(f(x)) = \frac{(7x - 3) + 3}{7} = \frac{7x}{7} = x
\]

\[
(f \circ g)(x) = f(g(x)) = 7 \left(\frac{x + 3}{7} \right) - 3 = x + 3 - 3 = x.
\]

Since \((g \circ f)(x) = (f \circ g)(x) = x\), yes they are inverses.

(d) Use the properties of logarithms to write \(f(x) = 2 \ln(x - 3) + \log_e(y + 2) - \ln(z) \) as a single logarithm.

\[
f(x) = \ln((x - 3)^2) + \ln(y + 2) - \ln(z) = \ln((x - 3)^2(y + 2)) - \ln(z) = \ln \left(\frac{(x - 3)^2(y + 2)}{z} \right).
\]
2. Consider the rational function

\[f(x) = \frac{x^2 + 4x + 3}{1 - x^2}. \]

(a) Express the domain of \(f \) in interval notation.

\[f(x) = \frac{(x+1)(x+3)}{(1+x)(1-x)} = \frac{x+3}{1-x} \] except that there is a hole at \(x = -1 \). Since we also divide by 0 at \(x = 1 \), the domain is \((-\infty, -1) \cup (-1, 1) \cup (1, \infty) \).

(b) Find the \(x \) and \(y \) intercepts of \(f \).

\[f(0) = \frac{0+3}{1} = 3 \] so the \(y \)-intercept is at \((0, 3) \). Setting \(0 = \frac{x+3}{1-x} \) yields \(x = -3 \), so the \(x \)-intercept is at \((-3, 0) \).

(c) Find all vertical and horizontal asymptotes and identify any holes.

Since \((1-x) \) remains in the denominator, \(x = 1 \) is a vertical asymptote. Horizontal asymptotes are determined by the highest powers in the numerator and denominator, so we have \(\frac{x+3}{1-x} \to \frac{x}{-x} = -1 \) and \(y = -1 \) is a horizontal asymptote.

As noted above, \(x = -1 \) gives a hole. The \(y \)-value is \(\frac{-1+3}{1-(-1)} = 1 \).

(d) Sketch a detailed graph of \(f \).
3. State the definition of “A function \(f \) is continuous at a number \(a \)”. Let

\[
 f(x) = \begin{cases}
 2x^2 - x - 15 & \text{if } x < 3 \\
 x - 3 & \text{if } x \geq 3 \\
 kx - 1 & \text{if } x \geq 3
\end{cases}
\]

Determine the value of \(k \) that will make the function \(f \) continuous at 3, or explain why no value of \(k \) will work.

A function \(f \) is continuous at a number \(a \) if \(\lim_{x \to a} f(x) = f(a) \).

Since the function is piecewise defined with a change at 3, we have to compute

\[
 f(3) = 3k - 1, \\
 \lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (kx - 1) = 3k - 1, \\
 \lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \frac{2x^2 - x - 15}{x - 3} = \lim_{x \to 3^-} \frac{(x - 3)(2x + 5)}{x - 3} = \lim_{x \to 3^-} 2x + 5 = 11.
\]

For \(\lim_{x \to 3} f(x) \) to exist we need \(3k - 1 = 11 \) so \(k = 4 \) and \(\lim_{x \to 3} f(x) = 11 = f(3) \).

4. State the Intermediate Value Theorem. Identify what are its assumptions (hypotheses) and what are its conclusions. Use the Intermediate Value Theorem to show that the equation \(10^x = x^2 \) has a solution.

If (hypotheses)

- \(f \) is continuous on \([a, b]\) and
- \(f(a) < N < f(b) \) or \(f(a) > N > f(b) \),

then (conclusions) there exists \(c \in (a, b) \) such that \(f(c) = N \).

Let \(f(x) = x^2 - 10^x \), so we want to show a solution to \(f(x) = 0 \) exists. Since \(x \) and \(10^x \) are both continuous, so is \(f(x) \). Plugging in, we find

\[
 f(0) = 0 - 10^0 = -1 < 0 \\
 f(-1) = 1 - 10^{-1} = 9/10 > 0.
\]

So, by the Intermediate Value Theorem, there must exist \(-1 < c < 0\) such that \(f(c) = 0 \).
5. Compute the following limits. If you use the Squeeze Theorem, then indicate the two functions that you are using to squeeze.

(a) \[\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4} = \]

\[\lim_{x \to 4} \frac{x(x - 4)}{(x - 4)(x + 1)} = \lim_{x \to 4} \frac{x}{x + 1} = \frac{4}{5} = \frac{4}{4 + 1} = \frac{4}{5}. \]

(b) \[\lim_{h \to 0} \frac{(2 + h)^3 - 8}{h} = \]

\[\lim_{h \to 0} \frac{2^3 + 3(2^2h) + 3(2h^2) + h^3 - 8}{h} = \lim_{h \to 0} \frac{12h + 6h^2 + h^3}{h} = \lim_{h \to 0} \frac{h(12 + 6h + h^2)}{h} = 12 + 0 + 0 = 12. \]

(c) For \(f(x) = (3x - 1)^{-1}, \) compute \[\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \]

\[\lim_{h \to 0} \frac{(3(x + h) - 1) - (3x - 1)^{-1}}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{3(x+h) - 1}{(3x-1)(3(x+h) - 1)} \right) = \lim_{h \to 0} \frac{-3h}{h(3x - 1)(3(x + h) - 1)} = \frac{-3}{(3x - 1)(3x + 0 - 1)} = \frac{-3}{(3x - 1)^2}. \]