Complete the following definitions and illustrate each with a graph.



- 1.  $\lim_{x \to a} f(x) = L$  means for every  $\epsilon > 0$  there exists  $\delta > 0$  such that  $0 < |x a| < \delta$  implies  $|f(x) L| < \epsilon$
- 2.  $\lim_{x \to a^+} f(x) = L$  means for every  $\epsilon > 0$  there exists  $\delta > 0$  such that  $0 < x a < \delta$  implies
- 3.  $\lim_{x\to a^-} f(x) = L$  means for every  $\epsilon > 0$  there exists  $\delta > 0$  such that implies
- 4.  $\lim_{x \to \infty} f(x) = L$  means for every  $\epsilon > 0$  there exists N such that x > N implies  $|f(x) L| < \epsilon$ .
- 5.  $\lim_{x \to -\infty} f(x) = L$  means for every there exists such that implies .
- 6.  $\lim_{x \to a} f(x) = \infty$  means for every there exists such that implies f(x) > M.
- 7.  $\lim_{x \to a^+} f(x) = \infty$  means for every there exists such that implies .

8. 
$$\lim_{x \to a^{-}} f(x) = \infty$$
 means for every

there exists

such that

implies

9. 
$$\lim_{x \to a} f(x) = -\infty$$
 means for every

there exists

such that

implies

10. 
$$\lim_{x \to a^+} f(x) = -\infty$$
 means for every

there exists

such that

implies

11. 
$$\lim_{x \to a^{-}} f(x) = -\infty$$
 means for every

there exists

such that

implies

 $\lim_{x \to \infty} f(x) = \infty \quad \text{means for every}$ 12.

there exists

such that

implies

$$\lim_{x \to -\infty} f(x) = \infty \quad \text{means for every}$$

there exists

such that

implies

$$\lim_{x \to \infty} f(x) = -\infty \quad \text{means for every}$$

there exists

such that

implies

15. 
$$\lim_{x \to -\infty} f(x) = -\infty$$
 means for every

there exists

such that

implies