Complete the following definitions and illustrate each with a graph.

1. \(\lim_{x \to a} f(x) = L \) means for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(0 < |x - a| < \delta \) implies \(|f(x) - L| < \epsilon \).

2. \(\lim_{x \to a^+} f(x) = L \) means for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(0 < x - a < \delta \) implies .

3. \(\lim_{x \to a^-} f(x) = L \) means for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that implies .

4. \(\lim_{x \to \infty} f(x) = L \) means for every \(\epsilon > 0 \) there exists \(N \) such that \(x > N \) implies \(|f(x) - L| < \epsilon \).

5. \(\lim_{x \to -\infty} f(x) = L \) means for every there exists such that implies .

6. \(\lim_{x \to a} f(x) = \infty \) means for every there exists such that implies \(f(x) > M \).

7. \(\lim_{x \to a^+} f(x) = \infty \) means for every there exists such that implies .
8. \(\lim_{x \to a^-} f(x) = \infty \) means for every there exists such that implies .

9. \(\lim_{x \to a} f(x) = -\infty \) means for every there exists such that implies .

10. \(\lim_{x \to a^+} f(x) = -\infty \) means for every there exists such that implies .

11. \(\lim_{x \to a^-} f(x) = -\infty \) means for every there exists such that implies .

12. \(\lim_{x \to \infty} f(x) = \infty \) means for every there exists such that implies .

13. \(\lim_{x \to -\infty} f(x) = \infty \) means for every there exists such that implies .

14. \(\lim_{x \to \infty} f(x) = -\infty \) means for every there exists such that implies .

15. \(\lim_{x \to -\infty} f(x) = -\infty \) means for every there exists such that implies .