This guide gives some sample questions for the test on Pre-Calculus. See also the MATH 2301 Calculus I handbook and MATH 1300 Precalculus website.

1. Verify the identity \(\frac{1}{1 - \cos(\theta)} + \frac{1}{1 + \cos(\theta)} = 2 \csc^2(\theta) \).

2. Solve the following equation for \(x \): \(\log_3(x - 4) + \log_3(x + 4) = 2 \).

3. The function \(f(x) = -7 + \sqrt{4x - 5} \) is one-to-one on its domain.
 (a) Find a formula for its inverse, \(f^{-1}(x) \).
 (b) Verify your formula is correct by computing and simplifying \(f \circ f^{-1}(x) \).

4. Consider the rational function
 \[f(x) = \frac{3x^2 - 3x}{x^2 - 5x + 4} \]
 (a) Express the domain of \(f \) in interval notation.
 (b) Find the \(x \) and \(y \) intercepts of \(f \).
 (c) Find all vertical and horizontal asymptotes.
 (d) Identify any holes.
 (e) Sketch a detailed graph of \(f \).

5. Simplify and cancel so that you can plug in the given value without dividing by 0.
 (a) For \(x = 2 \), \(\frac{x^2 + x - 6}{x - 2} = \)
 (b) For \(x = 4 \), \(\frac{\sqrt{x} - 2}{x - 4} = \)
 (c) For \(h = 0 \), \(\frac{(x + h)^2 - x^2}{h} = \)
 (d) For \(h = 0 \), \(\frac{(x + h)^{-1} - x^{-1}}{h} = \)