/25

any help on

score	possible 25 25 10 15 25	problem 1 2 3 4 5	Name: Name: Name: Name: Work in groups of 3 or 4. Show your work. Aknowle	edge
	100		these specific problems.	

Fall 2016

1. A company wishes to manufacture a box with a volume of 6 m³ that is open on top and has a square base. The material for the bottom of the box costs \$3 per m², while the material for the sides costs \$2 per m². Find the dimensions of the box that will lead to minimum total cost. What is the minimum total cost?

2. For integers $m \leq n$ and some numbers $\{a_i\}$, sigma notation is defined by

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n.$$

The following are proposed properties of sigma notation. For each of them, either

- explain/ prove/ show that it is (always) true or
- give an example showing that it is false.

/3 (a)
$$\sum_{i=m}^{n} a_i = \sum_{j=m}^{n} a_j$$

/3 (b)
$$\sum_{i=m}^{n} a_i = \sum_{i=0}^{n-m} a_{i-m}$$

/3 (c)
$$\sum_{i=m}^{n} (3a_i) = 3 \left(\sum_{i=m}^{n} a_i \right)$$

/3 (d)
$$\sum_{i=m}^{n} a_{3i} = \sum_{i=3m}^{3n} a_i$$

/3 (e)
$$\sum_{i=m}^{n} (a_i + b_i) = \left(\sum_{i=m}^{n} a_i\right) + \left(\sum_{i=m}^{n} b_i\right)$$

/3 (f)
$$\sum_{i=m}^{n} (a_i b_i) = \left(\sum_{i=m}^{n} a_i\right) \left(\sum_{i=m}^{n} b_i\right)$$

/3 (g)
$$\sum_{i=m}^{n} |a_i| = \left| \sum_{i=m}^{n} a_i \right|$$

/4 (h)
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

/10 3. 4-methylcyclohexanemethanol (MCHM) leaked from a tank at a rate of r(t) liters (l) per hour (h). The rate decreased as time passed and the values of the rate at two-hour intervals are shown in the table. Find lower and upper estimates for the total amount of MCHM that leaked out.

t(h)	0	2	4	6	8	10
r(t) (l/h)	8.7	7.6	6.8	6.2	5.7	5.3

- /15 4. A brick falls from the top of a tall building 450 m above the ground.
 - (a) Find the distance of the brick above ground level at time t.
 - (b) How long does it take the brick to hit the ground?
 - (c) With what velocity does it hit the ground?

- /25 5. For the function $f(x) = \frac{1}{2}x \sin(x)$ on the interval $0 < x < 3\pi$:
 - (a) Find any asymptotes.
 - (b) Find the intervals on which f is increasing or decreasing.
 - (c) Find the local maximum and minimum values of f.
 - (d) Find the intervals of concavity and the inflection points.
 - (e) Use the information above to sketch the graph.

