Group	Work	September	6

	-1	
n		

	score	possible	problem
		20	1
		20	2
		20	3
		20	4
		20	5
•		100	

Name:	
Name:	
Name:	
Name:	

Work in groups of 3 or 4. Show your work. Aknowledge any help on these specific problems.

/20 1. Consider the function

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le -2 \\ x + A & \text{if } x > -2 \end{cases},$$

where A is some constant.

- (a) Find $\lim_{x\to -2^-} f(x)$. Is f continuous from the left at x=-2?
- (b) What value of A would make f continuous at x = -2?
- (c) Using the value of A that you just found, graph f.

/20 2. State the Squeeze Theorem. Identify what are its assumptions (hypotheses) and what are its conclusions. Use the Squeeze Theorem to evaluate $\lim_{x\to 0} \sin(x) \cos\left(\frac{1}{x^2}\right)$. Indicate which functions you are using to squeeze.

/20 3. State the Intermediate Value Theorem. Identify what are its assumptions (hypotheses) and what are its conclusions. Use the Intermediate Value Theorem to show that the equation $3^x = x^2$ has a solution.

- /20 4. Sketch the graph of a single function f that:
 - has domain [-4, 5]
 - has f(2) = 1
 - has $\lim_{x \to 2} f(x) = 4$
 - has $\lim_{x \to 3^+} f(x) = -3$
 - has $\lim_{x \to 3^-} f(x) = 3$
 - is continuous except possibly at x = 1, x = 2, and x = 3

/20 5. Sketch the graph of a single function f that:

- has $\lim_{x\to 2} f(x) = \infty$
- has $\lim_{x \to -2^+} f(x) = \infty$
- has $\lim_{x \to -2^-} f(x) = -\infty$
- has $\lim_{x \to \infty} f(x) = \infty$
- has $\lim_{x \to -\infty} f(x) = 3$
- ullet is continuous except possibly at x=2 and x=-2