1. Sketch the graph of a single function that has all of the following properties:

(a) Continuous everywhere.

(b) \(f'(x) > 0 \) if \(|x| < 2 \).

(c) \(f'(x) < 0 \) if \(|x| > 2 \).

(d) \(f'(-2) = 0 \).

(e) \(f \) is not differentiable at \(x = 2 \).

(f) \(\lim_{x \to 2} |f'(x)| = \infty \).

(g) \(f''(x) > 0 \) if \(x \neq 2 \).

(h) \(f(2) = 3 \).

Organizing into a chart, we have:

\[
\begin{array}{cccccc}
 f'' & + & + & + & \text{DNE} & + \\
 f' & + & + & 0 & + & \text{DNE} & - \\
 \hline
 (\infty, -2) & -2 & (-2, 2) & 2 & (2, \infty) \\
\end{array}
\]

There is a minimum at \(x = -2 \) and a cusp at \(x = 2 \).
2. Let \(f(x) = 2x^3 - 3x^2 - 12x + 3 \)

(a) Find the intervals where \(f \) is increasing, and the intervals where it is decreasing.

\[
f'(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1)
\]

so the critical numbers are \(x = 2 \) and \(x = -1 \). The sign chart is

\[
\begin{array}{c|c|c|c}
 & (-\infty, -1) & (-1, 2) & (2, \infty) \\
\hline
f' & + & 0 & - & + \\
f & \nearrow & \searrow & \nearrow & \\
\end{array}
\]

so \(f \) is increasing on \((-\infty, -1)\) and \((2, \infty)\) and decreasing on \((-1, 2)\).

(b) Find the intervals where \(f \) is concave up, and the intervals where it is concave down.

\[
f''(x) = 6(2x - 1)
\]

so \(f''(x) = 0 \) at \(x = 1/2 \). The sign chart is

\[
\begin{array}{c|c|c}
 & (-\infty, 1/2) & (1/2, \infty) \\
\hline
f'' & - & + \\
f & \nearrow & \searrow & \nearrow \\
\end{array}
\]

so \(f \) is concave up on \((1/2, \infty)\) and concave down on \((-\infty, -1)\).

(c) Find the absolute maximum and minimum values of \(f \) on the interval \([-2, 0]\).

The only critical number in the interval is \(x = -1 \). Evaluating there and at the endpoints we get

\[
\begin{align*}
f(-2) &= -16 - 12 + 24 + 3 = -1, \\
f(-1) &= -2 - 3 + 12 + 3 = 10, \quad \text{and} \\
f(0) &= 3.
\end{align*}
\]

Thus the absolute maximum is 10 and occurs at \(x = -1 \) and the absolute minimum is -1 and occurs at \(x = -2 \).
3. For the function \(f(x) = \frac{x}{x^2 - 9} \)

(a) Find the x- and y-intercepts.

(b) Find any asymptotes.

(c) Find the intervals on which \(f \) is increasing or decreasing.

(d) Find the local maximum and minimum values of \(f \).

(e) Find the intervals of concavity and the inflection points.

(f) Use the information above to sketch the graph.

\(f(0) = 0 \) and no other \(x \) makes \(f(x) = 0 \), so both intercepts are at \((0, 0)\).

The denominator is 0 and there are vertical asymptotes at \(x = -3 \) and \(x = 3 \).

\[
\lim_{x \to \pm \infty} \frac{x}{x^2 - 9} = \lim_{x \to \pm \infty} \frac{x}{x^2} = \lim_{x \to \pm \infty} \frac{1}{x} = 0
\]

so there is a horizontal asymptote at \(y = 0 \).

\[
f'(x) = \frac{1(x^2 - 9) - x(2x)}{(x^2 - 9)^2} = -\frac{x^2 - 9}{(x^2 - 9)^2},
\]

which is undefined at \(x = \pm 3 \) but is never 0.

\[
f''(x) = -\frac{2x(x^2 - 9)^2 - (x^2 - 9)(x^2 - 9)2x}{(x^2 - 9)^4} = -2x(x^2 - 9) - (x^2 - 9)2x = 2x(x^2 + 9 + 2x^2 + 18) = \frac{2x(x^2 + 27)}{(x^2 - 9)^3},
\]

which is undefined at \(x = \pm 3 \) and 0 at \(x = 0 \).

Assembling into a chart and checking signs, we have

\[
\begin{array}{cccc}
\text{I.P.} & \text{V.A.} & \text{I.P.} & \text{V.A.} \\
\hline
f'' & - & DNE & + & 0 & - & DNE & + \\
f' & - & DNE & - & - & - & DNE & - \\
\hline
\end{array}
\]

The are no local maxima or minima. There is an inflection point at \((0, 0)\).
4. (a) State the Mean Value Theorem (MVT).

If • f is continuous on the closed interval $[a, b]$ and
• f is differentiable on the open interval (a, b),
then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

(b) State why the function

$$f(x) = x^3 - 3x + 2$$
on the interval $[-2, 2]$
satisfies each of the hypotheses of the MVT on the given interval. Then find all numbers c that satisfy the conclusion of the MVT.

Since f is a polynomial, it is continuous and differentiable everywhere, and so satisfies the hypotheses.

We want $c \in (-2, 2)$ so that

$$f'(c) = \frac{f(2) - f(-2)}{2 - (-2)} = \frac{8 - 6 + 2 - (-8 + 6 + 2)}{2 - (-2)} = 1.$$

We have $f'(x) = 3x^2 - 3$ so we set up the equation $3x^2 - 3 = 1$, which has solutions $c = \pm \sqrt{4/3}$, both of which are in $(-2, 2)$.

5. Compute the following:

(a) $\frac{d}{dx}[x^x] =$

Set $y = x^x$ so $\ln(y) = x \ln(x)$. Differentiating yields $\frac{y'}{y} = 1 + \frac{1}{x} = \ln(x) + 1$, so $y' = x^x (\ln(x) + 1)$.

(b) $\lim_{x \to \infty} x^x = \infty \infty = \infty$

(c) $\lim_{x \to 0^+} x^x =$

Directly plugging in gives the indeterminate form 0^0. Instead we use properties of exponentials and logarithms and continuity to transform to

$$\lim_{x \to 0^+} e^{x \ln(x)} = e^{\lim_{x \to 0^+} x \ln(x)}.$$

Directly evaluating the inner limit gives indeterminate form $0(-\infty)$. Rewriting to get ∞/∞ form, we can apply L’Hôpital’s rule to get

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{x^{-1}}{-x^{-2}} = \lim_{x \to 0^+} -x = 0.$$

The original limit is thus $e^0 = 1$.