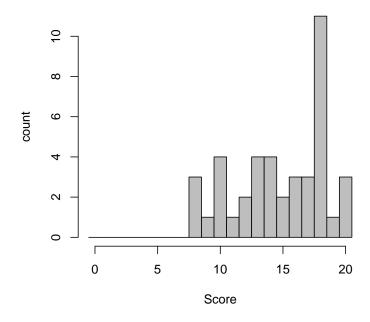
score	possible	page
	20	1
	30	2
	30	3
	20	4
	100	

Name:

Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

- 1. Sketch the graph of a single function that has all of the following properties:
- /2 (a) Continuous everywhere.
- /2 (b) f'(x) > 0 if |x| < 2.
- /4 (c) f'(x) < 0 if |x| > 2.
- /2 (d) f'(-2) = 0.
- /2 (e) f is not differentiable at x = 2.
- /2 (f) $\lim_{x \to 2} |f'(x)| = \infty$.
- /4 (g) f''(x) > 0 if $x \neq 2$.
- /2 (h) f(2) = 3.

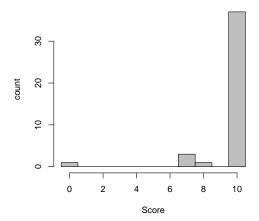


/10

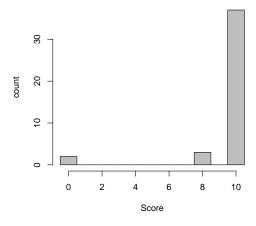
/10

2. Let
$$f(x) = 2x^3 - 3x^2 - 12x + 3$$

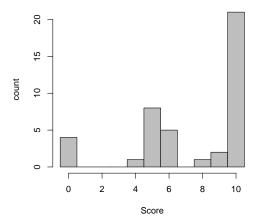
(a) Find the intervals where f is increasing, and the intervals where it is decreasing.



/10 (b) Find the intervals where f is concave up, and the intervals where it is concave down.



(c) Find the absolute maximum and minimum values of f on the interval [-2,0].



/4

/6

/6

/10

3. For the function

$$f(x) = \frac{x}{x^2 - 9}$$

/2 (a) Find the x- and y-intercepts.

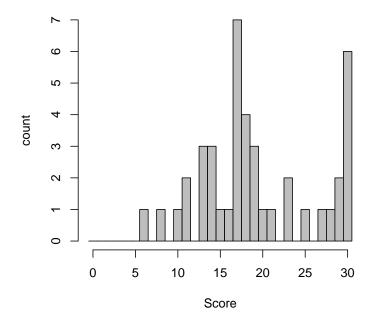
(b) Find any asymptotes.

(c) Find the intervals on which f is increasing or decreasing.

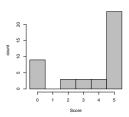
/2 (d) Find the local maximum and minimum values of f.

(e) Find the intervals of concavity and the inflection points.

(f) Use the information above to sketch the graph.



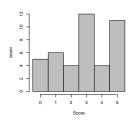
/5 4. (a) State the Mean Value Theorem (MVT).



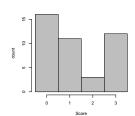
/5 (b) State why the function

$$f(x) = x^3 - 3x + 2$$
 on the interval $[-2, 2]$

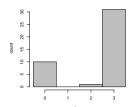
satisfies each of the hypotheses of the MVT on the given interval. Then find all numbers c that satisfy the conclusion of the MVT.



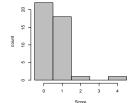
5. Compute the following:



/3 (a) $\frac{d}{dx}[x^x]$



/3 (b) $\lim_{x \to \infty} x^x =$



/4 (c) $\lim_{x \to 0^+} x^x =$

Total

