score	possible	page
	20	1
	25	2
	25	3
	30	4
	100	

Name:

Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

/10 1. Solve the equation and describe all solutions that lie in the interval $[0, 2\pi)$:

$$2\sin^2(\theta) = 5\sin(\theta) + 3.$$

$$\Leftrightarrow 0 = 2\sin^2(\theta) - 5\sin(\theta) - 3$$
$$\Leftrightarrow 0 = (2\sin(\theta) + 1)(\sin(\theta) - 3)$$
$$\Leftrightarrow \sin(\theta) = -1/2 \quad \text{or} \quad \sin(\theta) = 3.$$

The first equation has solutions $\theta = 7\pi/6$ and $\theta = 11\pi/6$. The second equation has no solutions.

- /10 2. Use the properties of logarithms to rewrite the following expressions:
 - Write as a single logarithm:

$$\log_2(x^3 - 4) + 2\log_2(x + 2) - 4\log_2(3x + 2)$$

• Write so that the result does not contain any powers, products, or quotients:

$$\log_3\left(\frac{xy}{z^2\sqrt[3]{w}}\right)$$

•

$$\log_2\left(\frac{(x^3-4)(x+2)^2}{(3x+2)^4}\right)$$

•

$$\log_3(x) + \log_3(y) - 2\log_3(z) - \frac{1}{3}\log_3(w)$$

/25

3. Consider the rational function

$$f(x) = \frac{x^2 + 4x + 3}{x^2 - 1} \,.$$

- (a) Express the domain of f in interval notation.
- (b) Find the x and y intercepts of f.
- (c) Find all vertical and horizontal asymptotes.
- (d) Identify any holes.
- (e) Sketch a detailed graph of f.

 $f(x)=\frac{(x+1)(x+3)}{(x+1)(x-1)}=\frac{x+3}{x-1}$ except that there is a hole at x=-1. Since we also divide by 0 at x=1, the domain is $(-\infty,-1)\cup(-1,1)\cup(1,\infty)$. $f(0)=\frac{0+3}{0-1}=-3$ so the y-intercept is at (0,-3). Setting $0=\frac{x+3}{x-1}$ yields x=-3, so the x-intercept is at (-3,0).

Since (x-1) remains in the denominator, x=1 is a vertical asymptote. Horizontal asymptotes are determined by the highest powers in the numerator and denominator, so we have $\frac{x+3}{x-1} \to \frac{x}{x} = 1$ and y = 1 is a horizontal asymptote.

As noted above, x = -1 gives a hole. The y-value is $\frac{-1+3}{-1-1} = -1$.

/15 4. Let

$$g(x) = \begin{cases} \frac{2x^2 - x - 15}{x - 3} & \text{if } x \neq 3\\ kx - 1 & \text{if } x = 3 \end{cases}.$$

Determine the value of k that will make the function g continous, or explain why no value of k will work.

For $x \neq 3$ we can reduce to

$$\frac{2x^2 - x - 15}{x - 3} = \frac{(x - 3)(2x + 5)}{x - 3} = 2x + 5.$$

From this we know that g is continuous when $x \neq 3$ and $\lim_{x\to 3} = 2(3) + 5 = 11$. To make g also continuous at x = 3, we need g(3) = k(3) - 1 = 11, which means k = 4.

/10 5. Use the Intermediate Value Theorem to show that the equation $2^{-x} = x$ has a solution.

Let $f(x) = x - 2^{-x}$, so we want to show a solution to f(x) = 0 exists. Since x and 2^{-x} are both continuous, so is f(x). Plugging in, we find

$$f(0) = 0 - 2^0 = -1 < 0$$
 and $f(1) = 1 - 2^{-1} = 1/2 > 0$.

So, by the Intermediate Value Theorem, there must exist 0 < c < 1 such that f(c) = 0.

- 6. Compute the following limits. If you use the Squeeze Theorem, then indicate the two functions that you are using to squeeze.
- /10 (a) For $f(x) = (2x+1)^{-1}$, compute $\lim_{h\to 0} \frac{f(x+h) f(x)}{h} =$

$$\begin{split} &= \lim_{h \to 0} \frac{(2(x+h)+1)^{-1} - (2x+1)^{-1}}{h} \\ &= \lim_{h \to 0} \frac{\frac{1}{(2(x+h)+1)} - \frac{1}{(2x+1)}}{h} \\ &= \lim_{h \to 0} \frac{\frac{(2x+1) - (2(x+h)+1)}{h}}{h} \\ &= \lim_{h \to 0} \frac{-2h}{h(2x+1)(2(x+h)+1)} \\ &= \lim_{h \to 0} \frac{-2}{(2x+1)(2(x+h)+1)} \\ &= \frac{-2}{(2x+1)(2(x+0)+1)} = \frac{-2}{(2x+1)^2} \,. \end{split}$$

/10 (b) $\lim_{x\to 0} 4x\cos(3/x) =$

Since the range of \cos is [-1,1], we have

$$|4x\cos(3/x)| \le 4|x|$$
 and so $-4|x| \le 4x\cos(3/x) \le 4|x|$.

We have $\lim_{x\to 0} -4|x| = 0 = \lim_{x\to 0} 4|x|$. So by the squeeze theorem, using the two functions -4|x| and 4|x| to squeeze, we know $\lim_{x\to 0} 4x\cos(3/x) = 0$.

/10 (c)
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3} =$$

$$= \lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3} \frac{\sqrt{x} + 3}{\sqrt{x} + 3}$$

$$= \lim_{x \to 9} \frac{(x - 9)(\sqrt{x} + 3)}{x - 9}$$

$$= \lim_{x \to 9} (\sqrt{x} + 3)$$

$$= \sqrt{9} + 3 = 6.$$