score	possible	page
	20	1
	20	2
	30	3
	30	4
	100	

Name:

Show your work!

You may not give or receive any assistance during a test, including but not limited to using notes, phones, calculators, computers, or another student's solutions. (You may ask me questions.)

/10 1. Verify the identity $\frac{1}{1-\cos(\theta)} + \frac{1}{1+\cos(\theta)} = 2\csc^2(\theta)$.

Putting onto a common denominator, we obtain

$$\frac{1 + \cos(\theta) + 1 - \cos(\theta)}{(1 - \cos(\theta))(1 + \cos(\theta))} = 2\csc^2(\theta).$$

Canceling in the numerator and expanding in the denominator yields

$$\frac{2}{1-\cos^2(\theta)} = 2\csc^2(\theta).$$

Recalling $1 = \sin^2(\theta) + \cos^2(\theta)$ and $\csc(\theta) = \frac{1}{\sin(\theta)}$, we get

$$\frac{2}{\sin^2(\theta)} = 2\left(\frac{1}{\sin(\theta)}\right)^2,$$

so the identity is verified.

/10 2. Solve the following equation for x: $\log_3(x-4) + \log_3(x+4) = 2$.

$$\Leftrightarrow \log_3 ((x-4)(x+4)) = 2$$

$$\Leftrightarrow (x-4)(x+4) = 3^2$$

$$\Leftrightarrow x^2 - 16 = 9$$

$$\Leftrightarrow x^2 = 25$$

$$\Leftrightarrow x = \pm 5$$

(Since the domain of \log_3 is $(0,\infty)$ and we started with $\log_3(x-4)$, we know x>4 and so could eliminate x=-5 as a solution.)

- 3. The function $f(x) = -7 + \sqrt[7]{4x 5}$ is one-to-one on its domain.
- /10 (a) Find a formula for its inverse, $f^{-1}(x)$.

$$y = -7 + \sqrt[7]{4x - 5}$$

$$\Leftrightarrow y + 7 = (4x - 5)^{1/7}$$

$$\Leftrightarrow (y + 7)^7 = 4x - 5$$

$$\Leftrightarrow \frac{(y + 7)^7 + 5}{4} = x$$

so
$$f^{-1}(x) = \frac{(x+7)^7 + 5}{4}$$
.

/10 (b) Verify your formula is correct by computing and simplifying $f \circ f^{-1}(x)$.

$$f \circ f^{-1}(x) = -7 + \sqrt[7]{4 \frac{(x+7)^7 + 5}{4} - 5}$$
$$= -7 + \sqrt[7]{(x+7)^7 + 5 - 5}$$
$$= -7 + \sqrt[7]{(x+7)^7}$$
$$= -7 + (x+7)$$
$$= x$$

/30 4. Consider the rational function

$$f(x) = \frac{3x^2 - 3x}{x^2 - 5x + 4}.$$

- (a) Express the domain of f in interval notation.
- (b) Find the x and y intercepts of f.
- (c) Find all vertical and horizontal asymptotes.
- (d) Identify any holes.
- (e) Sketch a detailed graph of f.

 $f(x) = \frac{3x(x-1)}{(x-4)(x-1)} = \frac{3x}{x-4}$ except that there is a hole at x=1. Since we also divide by 0 at x=4, the domain is $(-\infty,1) \cup (1,4) \cup (4,\infty)$.

 $f(0) = \frac{3(0)}{0-4} = 0$ so the y-intercept is at (0,0). Setting $0 = \frac{3x}{x-4}$ yields x = 0, so the x-intercept is also at (0,0).

Since (x-4) remains in the denominator, x=4 is a vertical asymptote. Horizontal asymptotes are determined by the highest powers in the numerator and denominator, so we have $\frac{3x}{x-4} \to \frac{3x}{x} = 3$ and y=3 is a horizontal asymptote.

As noted above, x = 1 gives a hole. The y-value is $\frac{3(1)}{1-4} = -1$.

5. Simplify and cancel so that you can plug in the given value without dividing by 0.

/10 (a) For
$$x = 2$$
, $\frac{x^2 + x - 6}{x - 2} =$

$$= \frac{(x+3)(x-2)}{x-2}$$
$$=(x+3)$$
$$=5$$

(Fishy since we used both $x \neq 2$ and x = 2.)

/10 (b) For
$$h = 0$$
, $\frac{(x+h)^2 - x^2}{h} =$

$$= \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \frac{2xh + h^2}{h}$$

$$= \frac{h(2x + h)}{h}$$

$$= 2x + h$$

$$= 2x$$

(Fishy since we used both $h \neq 0$ and h = 0.)

/10 (c) For
$$h = 0$$
, $\frac{(x+h)^{-1} - x^{-1}}{h} =$

$$= \frac{\frac{1}{(x+h)} - \frac{1}{x}}{h}$$

$$= \frac{\frac{x}{x(x+h)} - \frac{x+h}{x(x+h)}}{h}$$

$$= \frac{\frac{x-(x+h)}{x(x+h)}}{h}$$

$$= \frac{\frac{-h}{x(x+h)}}{h}$$

$$= \frac{-h}{hx(x+h)}$$

$$= \frac{-1}{x^2}$$

(Fishy since we used both $h \neq 0$ and h = 0.)