	score	possible	problem	Na
		20	1	Na
		30	2	Na
		30	3	Na
		20	4	
•		100		Wo

Name:
Name:
Name:

Work in groups of 3 or 4. Show your work. Aknowledge any help on these specific problems.

The derivative of a function f at x is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \,. \tag{1}$$

/10 1. (a) Let $f(x) = x^2$. Using the definition of the derivative (1), compute f'(x).

/10 (b) Let $f(x) = \frac{2x+1}{x-5}$. Using the definition of the derivative (1), compute f'(x).

- /30 2. Let $f(x) = x^2 3$
 - Using the definition of the derivative (1), compute f'(x).
 - Find the equation for the tangent line at x = 1.
 - Plot f(x) and the tangent line.

- /30 3. Let $f(x) = \sqrt{x}$
 - Using the definition of the derivative (1), compute f'(x).
 - Find the equation for the tangent line at x = 4.
 - Plot f(x) and the tangent line.

- /20 4. Sketch the graph of a single function f that:
 - has f(0) = f(2) = f(4) = 0
 - has f'(1) = f'(3) = 0
 - has f'(0) = f'(4) = 1
 - has f'(2) = -1
 - has $\lim_{x \to \infty} f(x) = \infty$
 - has $\lim_{x \to -\infty} f(x) = -\infty$