Work in groups of 3 or 4. Show your work. Acknowledge any help on these specific problems.

The derivative of a function f at x is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$ \hfill (1)

1. (a) Let $f(x) = x^2$. Using the definition of the derivative [1], compute $f'(x)$.

(b) Let $f(x) = \frac{2x+1}{x-5}$. Using the definition of the derivative [1], compute $f'(x)$.

<table>
<thead>
<tr>
<th>score</th>
<th>possible</th>
<th>problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1</td>
<td>Name:</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>Name:</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>Name:</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
2. Let $f(x) = x^2 - 3$

 • Using the definition of the derivative, compute $f'(x)$.
 • Find the equation for the tangent line at $x = 1$.
 • Plot $f(x)$ and the tangent line.
3. Let $f(x) = \sqrt{x}$

- Using the definition of the derivative (1), compute $f'(x)$.
- Find the equation for the tangent line at $x = 4$.
- Plot $f(x)$ and the tangent line.
4. Sketch the graph of a single function f that:

- has $f(0) = f(2) = f(4) = 0$
- has $f'(1) = f'(3) = 0$
- has $f'(0) = f'(4) = 1$
- has $f'(2) = -1$
- has $\lim_{x \to \infty} f(x) = \infty$
- has $\lim_{x \to -\infty} f(x) = -\infty$