The test is Wednesday March 13. Here are some sample questions, some of which are from old tests. No books or notes are allowed.

1. Projectors:
 (a) Prove that if P is a projector then $\text{range}(I - P) = \text{null}(P)$.
 (b) Prove that a projector P is an orthogonal projector if and only if $P = P^*$.

2. QR:
 (a) State the formal definition of the full QR factorization for a matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$.
 (b) Prove that every $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a full QR factorization.

3. Modified Gramm-Schmidt:
 (a) Describe the modified Gramm-Schmidt algorithm and show that it produces a QR factorization.
 (b) Give the algorithm as pseudocode and compute the number of flops needed.

4. Householder:
 (a) Define a Householder reflector and show that it does what you say it does.
 (b) Describe the Householder algorithm and show that it produces a QR factorization.
 (c) Give the algorithm as pseudocode and compute the number of flops needed.

5. Least squares:
 (a) Fill in the blank and Prove:
 Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ and $b \in \mathbb{C}^m$ be given. A vector $x \in \mathbb{C}^n$ minimizes the residual norm $\|r\|_2 = \|b - Ax\|_2$ if and only if
 \[\text{The solution } x \text{ is unique if and only if } A \text{ has full rank.} \]
 (b) Show how to solve a least squares problem using the QR factorization.
 (c) Show how to solve a least squares problem using the SVD.