1. Solve the systems of equations:
 (a) \[
 \begin{align*}
 x + y &= 1 \\
 3x + 3y &= 1
 \end{align*}
 \]
 (b) \[
 \begin{align*}
 3x - 2y - z &= -9 \\
 -x + y + 2z &= 5 \\
 5x - 3y + 4z &= -9
 \end{align*}
 \]

2. Let \(A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \).
 (a) Compute the length of \(B \).
 (b) Write a formula for the angle \(B \) makes with the vector \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) (the \(x \)-axis).
 (c) Find the transpose of \(A \).
 (d) Compute the determinant of \(A \).
 (e) Compute the trace of \(A \).
 (f) Compute \(AA + 3A \).
 (g) Find \(A^{-1} \).
 (h) Use \(A^{-1} \) to solve the matrix equation \(AX = B \) for \(X \).
 (i) Find the eigenvalues and eigenvectors of \(A \).

3. Consider (but do not solve) the system of equations
 \[
 \begin{align*}
 x + 2y &= 3 \\
 4x + 5y &= 6
 \end{align*}
 \]
 Create a word problem that would result in this system of equations. Describe the meaning of \(x \) and \(y \) in your problem, and what each equation represents.