1. Guaranteed question:
 Let
 \[A = \begin{bmatrix} \star \star \star \text{given, at most } 4 \times 4 \star \star \star \end{bmatrix} \]
 (a) Use Gaussian elimination without pivoting to factor \(A = LU \).
 (b) Use your \(LU \) factorization to solve
 \(Ax = \begin{bmatrix} \star \star \star \text{given } \star \star \star \end{bmatrix} \).
 (c) Use your \(LU \) factorization to find \(|A| \).
 (d) Is \(A \) diagonally dominant? positive definite? singular?

2. Likely questions:
 (a) Redo your factorization using pivoting.
 (b) Explain/justify/demonstrate why pivoting is necessary.
 (c) Derive the operation counts for \(LU \) decomposition.
 (d) Explain what a band matrix is, and why we care.

3. Math 446 students: Make sure you wrote your name on the test.
 Math 546 students: The book has the following theorem:
 \textbf{Theorem:} [**either Theorem 6.19 (without stability) or Theorem 6.21 **]
 Prove this theorem. If you use any other theorems from the book during your proof, then you need to state those theorems.