1. Compute the following derivatives:

(a) \(f(x) = \arctan(x) \Rightarrow f'(x) = \)

(b) \(f(x) = \ln(x) \Rightarrow f'(x) = \)

(c) \(f(x) = \log_3(x) \Rightarrow f'(x) = \)

(d) \(f(x) = \frac{\arctan(\log_3(7x))}{x^4 + 2x} \Rightarrow f'(x) = \)

2. (a) Find the derivative of \(y = \frac{x^2 \sin(2x)(x^5 - 7x)^6}{(\sqrt{x^9 + 1})3^x} \)

(b) Let \(f \) be a continuous function with

- \(f(0) = 3 \)
- \(f(2) = 6 \)
- \(f'(x) = 0 \) for \(0 < x < 1 \)
- \(f'(x) < 2 \) for \(1 < x < 2 \)

Sketch such a function or explain why it is impossible.

3. Let \(f(x) = \frac{x^3}{3} - 2x^2 + 3x + 1. \)

(a) Find the intervals where \(f \) is increasing, and the intervals where it is decreasing.

(b) Find the intervals where \(f \) is concave up, and the intervals where it is concave down.

(c) We wish to approximate \(f(0.01312) \). A crude approximation is \(f(0.01312) \approx f(0) = 1. \)

Use a linear approximation to \(f \) based at \(x = 0 \) to give a better estimate for \(f(0.01312) \).

4. The volume of a spherical cell of radius \(r \) is given by

\[V(r) = \frac{4}{3} \pi r^3. \]

If you can determine the radius within an accuracy of 3%, how accurate is your calculation of the volume?