Here are some sample questions from sections 1.3-1.6. Some topics that we covered are not represented by these questions, but are still fair game.

1. Consider the function

$$
f(x)=\left\{\begin{array}{ll}
x^{2} & \text { if } x \leq-2 \\
A x & \text { if } x>-2
\end{array},\right.
$$

where A is some constant.
(a) Find $\lim _{x \rightarrow-2^{-}} f(x)$. Is f continuous from the left at $x=-2$?
(b) What value of A would make f continuous at $x=-2$?
(c) Using the value of A that you just found, graph f.
2. Use the Intermediate Value Theorem to show that the equation $x^{2}=\cos (x)$ has a solution.
3. Compute the following limits. If you use the squeeze theorem, then indicate the two functions that you are using to squeeze.
(a) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-5 x+6}$
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$
(c) $\lim _{x \rightarrow 0} x^{2} \cos (3 / x)$
(d) $\lim _{h \rightarrow 0} \frac{x^{2}-(x-2 h)^{2}}{h}$
(e) $\lim _{t \rightarrow 0} \frac{\frac{1}{5+t}-\frac{1}{5}}{t}$
(f) $\lim _{x \rightarrow 2^{+}} \frac{x+2}{x^{2}-5 x+6}$
(g) $\lim _{x \rightarrow-\infty} \frac{3 x^{3}-4}{2 x^{3}-2}$
(h) $\lim _{x \rightarrow \infty} \cos (1 / x)$
(i) $\lim _{x \rightarrow \infty}\left(x-x^{2}\right)$

