1. Consider the integral
\[\int_{0}^{1} \cos(3x^2 + 1) \, dx. \]
(a) Compute an approximation to the integral using the Trapezoid rule with \(n = 6 \) subintervals.
(b) Determine what \(n \) is needed to assure the error using the trapezoid rule is at most 0.0001.
(c) Determine what \(n \) is needed to assure the error using Simpson’s rule is at most 0.0001.

2. Compute the value of the following integrals, or determine that they are divergent.
(a) \(\int_{1}^{\infty} x^{-5/2} \, dx \)
(b) \(\int_{0}^{\infty} \frac{e^x}{e^{2x} + 3} \, dx \)
(c) \(\int_{0}^{1} \frac{\ln(x)}{\sqrt{x}} \, dx \)

3. Determine if the following integrals are convergent or divergent, but do not try to compute their values.
(a) \(\int_{1}^{\infty} \frac{2 + e^{-x}}{x} \, dx \)
(b) \(\int_{0}^{1} \frac{1}{x^2 + \sqrt{x}} \, dx \)

4. Compute the area of the region enclosed by the curves \(y = (x - 1)^2 \) and \(y = x + 1 \).

5. Compute the area of the region with \(x > 0 \) and enclosed by the curves \(y = 1/x \), \(y = x \), and \(y = 4x \).