The second test is in class on Friday 3 February.

Here are some sample questions, so that you have an idea of what to expect.

You can use the following table of integrals for any of the questions:

$$\bullet \int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x + \sqrt{x^2 \pm a^2}| + C$$

1. (a)
$$\int_0^3 \frac{1}{\sqrt{x}} dx =$$

(b)
$$\int_3^\infty \frac{1}{\sqrt{x}} \, dx =$$

(c)
$$\int_{3}^{\infty} \frac{1}{x^2} dx =$$

(d)
$$\int_{3}^{\pi} \frac{9}{\sqrt{x^2 - 4}} dx =$$

(e)
$$\int xe^{-3x}dx =$$

2. (a)
$$\int \frac{5}{x^2 + x - 2} dx =$$

(b)
$$\int 7x^2 \csc(x^3) dx =$$

(c)
$$\int \frac{x \ln(1+x^2)}{1+x^2} dx =$$

(d)
$$\int_{1}^{4} (x-2)^{-1/3} dx =$$

- 3. (a) Find the Taylor approximation of degree n=3 about a=1 for the function $f(x)=\ln(x)$.
 - (b) Use your Taylor approximation to estimate the value of ln(2).
 - (c) Use Taylor's formula to bound the difference between your estimate and the true value ln(2).