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This tutorial is designed for people with little or no
experience with wavelets. We will cover the basic
concepts and language of wavelets and computational
harmonic analysis, with emphasis on the applications
to numerical analysis. The goal is to enable those who
are unfamiliar with the area to interact more
productively with the specialists.

Thanks to Gregory Beylkin, Willy Hereman, and
Lucas Monzon for help with this tutorial.



Goals

e Enable the wavelet novice to interact
more productively with the specialists, by

— Introducing the basic concepts and
language

— Doing some physics related examples

— Explaining why people like them

Not Goals

e Give the history and assign credit

e Convince you that wavelets are better
than any particular technique for any
particular problem



Outline

Multiresolution Analysis

e wavelets (traditional)
e properties
e fast algorithms

Connections with Fourier Analysis

e Local Cosine and the phase plane
e 1D Schrodinger example
e Wwavelet packets

Operators in Wavelet Coordinates

e density matrix example

Review and Questions



Multiresolution Analysis

A multiresolution analysis is a decomposition
of L2(R), into a chain of closed subspaces

...CVoCViCVygCV_1CV_ »C ---CL?R)
such that

1. Njez V; =10} and
Ujez V; is dense in L2(R)

2. f(z) € V; if and only if f(2z) € V;_1

3. f(x) € Vg if and only if f(x — k) € Vg
for any k € Z.

4. There exists a scaling function ¢ € Vg
such that {¢(z — k)}recz is an orthonormal
basis of V.



Multiresolution Analysis

et Wj be the orthogonal complement
of Vj in Vj_li

Vji—1=V; ® Wy,
so that

L°(R) = P W,.
JEZ

Selecting a coarsest scale V,, and finest scale
Vo, we truncate the chain to

VpoC---C Vo C V71 CVp

and obtain

From the scaling function ¢ we can define
the wavelet +, such that {¢(z — k) }rc7z iS an
orthonormal basis of Wy.



Multiresolution Analysis

Example: Haar wavelets

1 for O<x <1
p(x) =
O elsewhere.

Vo =span({p(x — k) }rcz) are piecewise
constant functions with jumps only at
integers.

(1 for0<z< 1/2
Y(x) =49 —1 for 1/2<zx <1,
0 elsewhere.

Wo =span({y(x — k) }.cz) are piecewise
constant functions with jumps only at
half-integers, and average 0 between integers.



Multiresolution Analysis
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Where’s the Wavelet?

Since Wj is a dilation of W, we can define

bip = 279227z — k)
and have

W = span({9; 1 (x) trez)-

In this example,
( fh % )
W, = span

—

o=

-,



Haar

daub4

daubl?2

Coif4

Coifl?2

T he Wavelet Zoo
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Vanishing Moments

Wavelets are usually designhed with vanishing
moments:

—+ o0
/ Y(x)xdx = 0, m=0,...,M —1,

oo
which makes them orthogonal to the low
degree polynomials, and so tend to compress
non-oscillatory functions.

For example, we can expand in a Taylor series

M—1
Xr) — ! €T c o (M_]-) L
f(z) = f(0) + f(O)z+ -+ f © a1
M
+ @)
and conclude
M
(F. )] < max | fAD (@)

Haar has M = 1.



Quadrature Mirror Filters

Wavelets are designed through properties of
their “quadrature mirror filter” {H,G}.

1
Haar «H = —2[1, 1]

Y2
1
daub4<—>H=m[1—|—\/§,3—|—\/§,3—\/§,1—\/§]

G =[H(3),-H(2),H(1),—-H(0)]}

(The values are usually not in closed form.)

For instance, vanishing moments

o0
/ Y(x)xdx = 0, m=0,...,M —1,

o0

are a consequence of

> G =0, m=20,..., M—1.
7



Trade-offs

You can get

e higher M

e Mmore derivatives

e Ccloser to symmetric

e closer to interpolating (coiflets)

if you pay by increasing the filter length,
which causes

e longer (overlapping) supports, and so
worse |localization.

e slower transforms

The cost is linear (in M etc.).



Fast Wavelet Transform

Sample onto the finest resolution and then
apply the “quadrature mirror filter" {H,G}.

Vo ° ° ° ° ° ° ° °

Vz | & o | W3

The total cost of this cascade is 2- N - L,
where L is the length of the filter.



There are many, many ’'lets

By loosening the definitions, you can get

symmetric
interpolating
2D properties (brushlets)

Rules of thumb:

e Use a special purpose wavelet if and only
if you have a special need.

e Use one vanishing moment per digit
desired (truncation level).

e DO not use more derivatives than your
function typically has.



Multiwavelets
(Polynomial version on [0, 1])

Fix k€ N, and let V,, be the space of
functions that are polynomials of degree less
than k on the intervals (274,2"(j + 1)) for
7=1,...,27" —1, and O elsewhere.

Vo is spanned by k scaling functions.
W is spanned by k multiwavelets.

By construction, the wavelets have k
vanishing moments, and so the same sparsity
properties as ordinary wavelets.

T he wavelets are not even continuous, but
this allows weak formulations of the
derivative, which allows better treatment of
boundaries.



Connections with Fourier Analysis

Fourier analysis gives an understanding of
frequency, but “non-stationary” signals beg
for space (time) localization.

This need motivates Computational Harmonic
Analysis and its tools, such as wavelets and
local cosine.

The theory and intuition are still based on
Fourier analysis.



Local Cosine Basis

Partition the line (interval, circle) with
ceap <aggprcce, I =laga401]

Construct a set of bells: {b;(x)}
with ¥; b2(z) = 1, b;i(z)b;_1(z) even about a;,

Construct the cosines which are even on the
left and odd on the right

{cg@ _ J 2 ((j +1/2)m( - >> } |
41 — G4 41 — G4

AT IS

VYUYV

{bi(aﬁ)cg(a:)} forms an orthonormal basis with
fast transform based on the FFT.




Phase Plane Intuition

If a function has ‘instantaneous frequency’

v(x), it should be represented by those Local
Cosine basis elements whose rectangles

intersect v(x). There are max{Al, 1} of these.

v(x)

¢ i —

nd 1/1

1| =1 x



Local Cosine Phase Plane

Consider the eigenfunctions of —A — C/z,
which have instantaneous frequency

vn = \/C/z + An.

NS
N e

X

We can get an efficient representation (with
proof) by adapting, but this is not very
flexible, especially in higher dimensions.



Wavelet Phase Plane

The multiresolution analysis divides the phase
plane differently:

For wavelets this is intuitive but not rigorous.



Wavelet Phase Plane

Consider again the instantaneous frequency

\\
ANNNN

AN
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We get an efficient representation without
adapting, so the location of the discontinuity
IS not important.



Tones

Sustained high frequencies, such as those in
spherical harmonics

(ATHAEARRIERATA
AL

To enable wavelets to handle such functions,
“Wwavelet packets’ were developed.



Wavelet Packets and Best Basis Searches

Idea: by filtering the wavelet spaces, we can
partition phase space in different ways:

Vo ° ° ° ° ° ° ° °

" H/\G H/\G
Vo | o o] o o

H/\G H/\G H/\G H/\G
Vi | e | o

Any choice of decompositions gives a wavelet
packet representation.

A fast tree search can find the “best basis’.



Wavelet Packets Phase Plane

/\

If we choose:

then our phase

plane looks like:




Operators

There are many competing, adaptive ways to
represent functions.

It is more interesting to consider operators
and develop operator calculus.

N\
A, B B3BT dl d’
N
M A, B3BY d° d’
N
M3 rs AgB; d° d>
4 4 4
ri | r3riid B8 59

Many operators are sparse in Wavelet bases.



Operators in the Nonstandard Form

The nonstandard form gives a more isotropic,
and often more sparse, representation.




Operators in Wavelets

Hamiltonian

* ] TR
Density Matrix
with 15
eigenfunctions - * - e
-




Operators in Wavelets

Some operators can be computed rapidly.
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C——™o straightforward disretization
+—t full wavelet representation
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Number of iterations

Here the density matrix is computed via the
sign iteration

To T/lIT1l2

(3T, — T2)/2, k=0,1,...

Ty



Philosophical Review

Multiscale assumption: Efficient when high
frequencies (sharp features) happen for a
short amount of time/space.

Cleanly adaptive: Refine or coarsen the
“grid” by adding or deleting basis
functions.

Automatically adaptive: Simply truncate
small coefficients.

Tunable: Decide on the needed precision and
properties first, then choose which
wavelet.



